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Abstract

Given a group of agents with heterogeneous information, there are many potential
forms for combining agents’ information. This paper introduces some language for
investigating different methods of aggregating information within groups, where the
knowledge of each agent or group of agents takes the general operator form. The op-
erator form allows for the modeling of agents who are less than perfectly rational in
their information processing. Various specific aggregation formulations are considered
in detail, including what ‘somebody knows’, what ‘everybody knows’, common knowl-
edge, and distributed knowledge. Distributed knowledge is what can be determined by
cooperating agents, given their information, under direct communication. Regularity
and preservation properties of aggregators are investigated and applied to the specific
aggregators listed.
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1 Introduction

The problem of combining attributes of multiple agents into a single attribute has a long

history. The Condorcet Paradox, identified by Condorcet [7] in 1785, highlights the issues

surrounding the aggregation of individuals’ preferences. While each agent may have well-

defined preferences, the group as a whole may end up with non-transitive preferences when

pairwise preferences are elicited though majority voting. Demand aggregation, and the

existence of a representative consumer, face similar issues. Samuelson argued in 1956 that

“Community indifference curves of the type needed for the derivation of community demand

do not exist” (Samuelson [27]). Gorman [14] gave explicit circumstances under which such

demand aggregation is possible.

Similar problems arise in the context of incomplete information when attempting to

aggregate individuals’ knowledge structures. When knowledge partitions, as in Aumann

[2], are taken as the primitives of the model, certain natural aggregations do not lead to

group knowledge partitions. For example, suppose there are three possible outcomes to
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some process, say High, Medium, or Low. Ann knows if the outcome will be High, while

Bob knows if it will be Low. The modeler can ask when does ‘somebody know’ the outcome.

Clearly, somebody knows if the outcome will be High, or if it will be Low, but no-one

knows if it will be Medium. The information structure necessary to convey what ‘somebody

knows’ does not admit a representation in the usual partition framework of knowledge. This

problem remains even if the set of available information structures is expanded to allow

correspondence, or signal-based, knowledge. The correspondence, or signal, approach to

information representation allows each state of the world to be associated with the set of

states the agent considers possible at that state. In this example, when the state is Medium,

Ann rules out High, while Bob rules out Low. Thus somebody rules out High and somebody

rules out Low, but no-one rules out both High and Low. The information structure necessary

to convey what ‘somebody knows’ does not even admit a representation in the more general

correspondence framework of knowledge.

This problem can be addressed by using a more general notion as the primitive of the

model; in particular using the knowledge operator approach. Throughout this work, each

agent’s knowledge is modeled by a knowledge operator, which links each event with the

states at which the agent claims to know the event has occurred.

This paper introduces the concept of knowledge aggregators and proposes some meth-

ods of classifying these structures. The idea of an aggregator is to generate a single new

knowledge operator based on the operators of a group of agents. A knowledge aggregator

takes the operators from multiple agents and combines them into a new knowledge operator

which describes the ‘group’ knowledge, for varying ideas of what ‘group’ knowledge might

mean. Aggregators which are investigated in some detail include what ‘somebody knows’,

what ‘everybody knows’, what is ‘common knowledge’, and what is ‘distributed knowledge’.

Various properties of aggregators are proposed and investigated. Standard properties

arising from viewing aggregators as functions of multiple inputs, such as anonymity, as-

sociativity, label neutrality, and identity, are considered. An aggregation is anonymous if

changing the label on the agents does not change the aggregation, while the aggregator is

label neutral if changing the label on the states does not change the aggregation. An aggre-
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gator is an identity if, when all agents have the same knowledge operator, the aggregation

has this operator as well.

Properties related to relative informativeness are also developed. Aggregators are classi-

fied as positive or negative aggregators. Positive aggregators increase the amount of infor-

mation known following the aggregation and can be associated with cooperative situations.

Negative aggregators restrict the amount of information known following the aggregation,

and are best associated with competitive situations. A simple criterion for identifying these

properties is given.

Knowledge operators are often assumed in the literature to have certain regularity prop-

erties which can be interpreted as rationality assumptions, notably the various assumptions

contained in Kripke’s S5 system for Modal Logic.1 Aggregators are said to preserve these

rationality assumptions, or logic properties, if, whenever every agent has some aspect of

rationality, then the aggregated information also has that aspect. Strong rationality as-

sumptions, such as the partition assumption of Aumann [2] are considered, as well as a

range of weaker assumptions. Generally speaking, the example aggregators considered tend

to have fairly weak preservation properties.

An equivalent formulation for knowledge operators based on ‘collections of known events’

is introduced. In this formulation each state of the world is associated with the collection

of events which an agent knows has occurred. Some results allow more direct proof when

thought of in terms of these collections of known events, rather than using the knowledge

operators directly.

These aggregation properties can also be viewed as helpful tools in the study of behavioral

economics. Firstly, the weaker conditions imposed by knowledge operators, compared to

partitions or correspondences, allow the existence of agents who are not rational in terms of

information processing. The modeling presented allows the existence of agents who process

information in a ‘behavioral’ manner. Secondly, because we can view an agent as being made

of multiple competing selves, this modeling allows us to aggregate the information of each

‘self’ into a single entity. This justifies emergent behavior in which each ‘self’ can be fully

1Details on Model Logic can be found in Chellas [8]
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rational, though the combined entity may not be.

Many other fields of study also investigate rationality and information aggregation, prin-

cipally philosophy and computer science. The S5 logic system used in Kripke semantics is

taken as an important case study in this work. In this paper, these ideas are able to be

explored by appealing purely to set theory, allowing a wider audience in the economics field

than most of the work in Modal Logic.

Information and knowledge concerns are very important in economics and game the-

ory. From auctions to contract theory, the precise modeling of information is of paramount

importance for the understanding of incentives and preferred strategies of strategic agents.

Information concerns are critically relevant even in the absence of strategic considerations.

Much has been written about decision making under uncertainty.2

Aumann [2] introduces the partitional approach to model knowledge and common knowl-

edge. Geanakoplos [12] and [13], FLAG combine references and as Brandenburger et al

[5] study the correspondence model. Samuelson [26] reviews how economists have modeled

knowledge and information. Unawareness is treated in great detail in Dekel, Lipman, and

Rustichini [9], Fagin and Halpern [10], and Heifetz, Meier, and Schipper [17].

Section 2 defines knowledge operators and aggregators, and introduces example aggrega-

tors to be investigated in subsequent sections. Section 3 considers properties of aggregators

derived from aggregators being functions of multiple inputs, as well as those properties re-

lated to the relative informativeness of the agents’ knowledge operators. Section 4 considers

some rationality assumptions that can be made on the set of knowledge operators, and how

these restrictions interact with knowledge aggregators. Section 5 gives an alternate formu-

lation of knowledge operators for technical purposes. The appendix contains all proofs.

2 Knowledge Aggregation

A state space is a non-empty finite set Ω of outcome-relevant states. Let 2Ω be the set of

all subsets of Ω. There is a non-empty, finite list (ordered set) J of agents, with a typical

2Initial work in this field includes von Neumann and Morgenstern [30], Savage [28], and Anscombe and
Aumann [1]. Machina [20] and [21] provide a survey of decision making under uncertainty.
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agent being denoted i or j. Knowledge for each agent j ∈ J is represented by a knowledge

operator Kj : 2Ω → 2Ω. The usual interpretation is that, for each event E ∈ 2Ω, the subset

KjE contains the states at which agent j knows that event E has occurred. That is, agent

j knows the event E has occurred at state ω precisely when ω ∈ KjE. Let K be the set of

all possible knowledge operators, K = {K : 2Ω → 2Ω}. In a given model, different agents

may have the same knowledge operators, while some knowledge operators may not be held

by any agents.

Definition 1. A tuple (Ω, J, {Kj}j∈J) is a knowledge model, where Ω is a state space, J is a

finite list of agents, and each Kj is a function Kj : 2Ω → 2Ω which is the knowledge operator

for agent j ∈ J .

Under the current description, a knowledge operator is not restricted in any way. For

example, it is entirely possible that an agent claims to know things which are not true. That

is, ω ∈ KjE, but ω /∈ E. Similarly, it is possible that the agent knows the stock price

tomorrow will be between $100 and $150, but not that the price will be between $50 and

$200. No assumptions are made on the agent’s information structures or processing ability

at this time. Section 4 considers the effect of various rationality assumptions on knowledge

aggregation.

2.1 General Knowledge Aggregation

A knowledge aggregator is a function that takes as input the knowledge operators of a

number of agents, and produces a single new knowledge operator which represents the ‘group

knowledge’ in some sense. The particular aggregator which may be of use to a modeler

will depend on the problem at hand. In many game-theoretic situations, the aggregation

of common knowledge is of great importance. If constructing a team project, where it is

only important that somebody knows the relevant information, then a ‘somebody knows’

aggregation will be of greatest interest. Any function which takes in the information from

multiple agents and constructs a new knowledge operator is a knowledge aggregator.

We are not concerned in this work with the method by which information is transferred
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between agents, algorithms which generate the group knowledge, or information revelation

mechanisms. Our concern is exclusively with the final form and properties of group knowl-

edge, or knowledge aggregation, which is obtained.

Definition 2. Let Ω be a finite state space, and K = {2Ω → 2Ω} be the set of functions from

2Ω to 2Ω. Let Seq(K) be the set of all finite sequences of elements of K.

A knowledge aggregator A is a function:

A : Seq(K)→ K

The sequence of knowledge operators represents the knowledge operators for some col-

lection of agents. Let J = (1, 2, . . . , |J |) be a finite list of agents and (K1, . . . , K |J |) be the

sequence of knowledge operators associated with J . To simplify notation we write AJ to

mean A(K1, . . . , K |J |). It must be emphasized that where A is an aggregator, a function

Seq(K)→ K, the symbol AJ refers to a knowledge operator, a function 2Ω → 2Ω.

Definition 3. Let (Ω, J, {Kj}j∈J) be a knowledge model, and A : Seq(K)→ K. The knowl-

edge aggregation AJ : 2Ω → 2Ω is the knowledge operator given by

AJE = A(K1, . . . , K |J |)E, for all E ∈ 2Ω

2.2 Classical Knowledge Aggregators

Four classical knowledge aggregators will be used throughout this work as example knowledge

aggregators. These are the everybody knows aggregator, denoted f, the common knowledge

aggregator, denoted ∧, somebody knows aggregator g, and the distributed knowledge ag-

gregator, denoted ∨. The intuitive idea of ‘somebody knows’ and ‘everybody knows’ are

fairly self-explanatory. The common knowledge is well-studied in the economics literature,

and is the concept that everybody knows, and everybody knows that everybody knows, and

so on ad infinitum. Common Knowledge is discussed in much greater detail in Chapter 2.3

Distributed knowledge is more familiar in the model logic literature, and describes what

agents can know if they work together by directly and completely sharing information.

3FLAG chapter reference
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We will usually be interested in how these knowledge aggregators behave on a given

knowledge model (Ω, J, {Kj}j∈J). Often we will write the corresponding operators in the

simplified forms: fJ , ∧J , gJ and ∨J .

Definition 4. Fix a state space Ω, and let K be the associated set of knowledge operators.

Define the everybody knows aggregator f : Seq(K) → K pointwise at each sequence

(K1, . . . , Kn) ∈ Seq(K) and event E ∈ 2Ω, by

f(K1, . . . , Kn)E =
n⋂
i=1

KiE

For a knowledge model (Ω, J, {Kj}j∈J), the everybody knows aggregation fJ : 2Ω → 2Ω is

fJE =
⋂
j∈J

KjE

Each state ω belongs to fJE when, at ω, all agents j ∈ J know event E.

In order to define common knowledge, let (K)(s) denote the operator K applied s times

for any s ∈ N.4 Iterated application of this operator is possible as it has the same domain

and codomain.

Definition 5. Fix a state space Ω, and let K be the associated set of knowledge operators.

Define the common knowledge aggregator ∧ : Seq(K) → K pointwise at each sequence

(K1, . . . , Kn) ∈ Seq(K) and event E ∈ 2Ω, by

∧(K1, . . . , Kn)E =
∞⋂
s=1

(
f(K1, . . . , Kn)

)(s)
E

For a knowledge model (Ω, J, {Kj}j∈J), the common knowledge aggregation ∧J : 2Ω → 2Ω is

∧JE =
∞⋂
s=1

(
fJ
)(s)

E

Event E is common knowledge at ω if everybody knows E, and everybody knows that everybody

knows E, and so on, ad infinitum.

4N = {1, 2, 3, . . . , } throughout.

8



This is the definition of common knowledge as in, for example, Bacharach [3]. Alternative

definitions for common knowledge are often used, as in, for example, Aumann [2]. Chapter 2

FLAG explores the distinction between these definitions. Both are generally equally useful

definitions of common knowledge. For brevity, the work restricts attention to the Bacharach

version of common knowledge presented in Definition 5.5

Definition 6. Fix a state space Ω, and let K be the associated set of knowledge operators.

Define the somebody knows aggregator g : Seq(K) → K pointwise at each sequence

(K1, . . . , Kn) ∈ Seq(K) and event E ∈ 2Ω, by

g(K1, . . . , Kn)E =
n⋃
i=1

KiE

For a knowledge model (Ω, J, {Kj}j∈J), the somebody knows aggregation gJ : 2Ω → 2Ω is

gJE =
⋃
j∈J

KjE

Each state ω belongs to gJE when, at ω, at least one agent j ∈ J knows event E.

Next we focus on distributed knowledge. Under distributed knowledge, the knowledge

aggregation knows event E at state ω if, working collectively, the agents can determine that

each state not in E has not occurred. It is an elimination process.

For an event E ∈ 2Ω, the complement of E is denoted ¬E = Ω\E. We say the agents can

collectively determine that ω̄ has not occurred if there is an agent who knows some subset

of ¬{ω̄}; that is, if there is an agent who knows an event which does not contain ω̄. The

distributed knowledge of E is when all points outside of E are collectively known to have

not occurred. This is formalized in Definition 7.

Definition 7. Fix a state space Ω, and let K be the associated set of knowledge operators.

Define the distributed knowledge aggregator ∨ : Seq(K) → K pointwise at each sequence

(K1, . . . , Kn) ∈ Seq(K) and event E ∈ 2Ω, by

∨ (K1, . . . , Kn)E =
⋂
ω̄ /∈E

⋃
F⊂¬{ω̄}

n⋃
i=1

KiF (1)

5The Bacharach definition of common knowledge was first introduced by Lewis [19].
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For a knowledge model (Ω, J, {Kj}j∈J), the distributed knowledge aggregation ∨J : 2Ω → 2Ω

is

∨JE =
⋂
ω̄ /∈E

⋃
F⊂¬{ω̄}

⋃
j∈J

KjF

Each state ω is in ∨JE when, for each state ω̄ outside E, there is some agent j ∈ J and

some event F 63 ω̄ such that j knows F . That is, for each state ω̄ outside E, there is some

agent who knows that state ω̄ did not happen.

The distributed knowledge aggregator admits an alternative representation in terms of

collections of known events, as detailed in Lemma 7 in Section 5. This alternative represen-

tation is useful for some of the proofs of properties of the distributed knowledge aggregator.

The next section considers some other properties of aggregators, and how they match

with the aggregators defined above.

3 Core Properties of Knowledge Aggregators

This section proposes and analyses a selection of regularity properties of aggregators. Section

3.1 studies properties of knowledge aggregators arising due to their nature as functions which

take a variable number of inputs. Section 3.2 considers properties related to the level of

information held by the agents, and how this relates to the resulting aggregation for different

aggregators.

3.1 Anonymity, Associativity, and Identity

This subsection studies properties of knowledge aggregators arising due to their nature as

functions which take a variable number of inputs; primarily to do with the order of aggrega-

tion. Three properties are discussed: anonymity, associativity, and identity. Anonymity is

the idea that the order in which agents are listed does not matter. Associativity is the idea

that the order in which aggregation takes place does not matter. Identity is the idea that if

all input operators are identical, then the aggregation may match each of the inputs.

While in general J has a defined order, in many cases it will be sufficient to consider J

as a set of agents. In particular, when aggregator A is anonymous, as in Definition 8, then
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it is enough to think of J as a set. As usual, anonymity is the statement that the order of

agents in the list does not matter.

Definition 8. Fix a state space Ω, and let K be the associated set of knowledge operators.

A knowledge aggregator A : Seq(K) → K is anonymous when, for all finite sequences

of knowledge operators (K1, . . . , Kn) ∈ Seq(K) and all bijective functions σ : {1, . . . , n} →

{1, . . . , n}, then

A(K1, . . . , Kn) = A(Kσ(1), . . . , Kσ(n))

All of the classical knowledge aggregators in Section 2.2 are anonymous. Aggregators

will fail anonymity when agents are treated differently. If, say, the modeler had a prior belief

that Agent 1 was more trustworthy than the other agents, then an appropriate knowledge

aggregation method would treat Agent 1 differently to the other agents.

While anonymity deals with the order of agents, the associativity condition is that the

order of aggregation does not matter. We provide two equivalent definitions of associativity.

The traditional definition of associativity for functions which take any finite sequence as

input is given by Definition 9. Associativity, according to Definition 9, is the idea that

aggregating the knowledge of all individuals in a single step is the same as aggregating any

subset, then adding the other members to the aggregation afterwards. Intuitively speaking,

it is a form of path-independence of aggregation.

Definition 10 provides an alternative definition of associativity. Associativity, according

to Definition 10, states that given two or more subpopulations of the set of agents, taking

the aggregation of all agents together should be the same as taking the aggregation of each

subpopulation, and then aggregating the outcomes. Further, this process should not depend

on the particular subpopulations used.

Proposition 1 shows that these definitions are equivalent.

Definition 9. Fix a state space Ω, and let K be the associated set of knowledge operators.

An aggregator A : Seq(K) → K is associative if, for any (K1, . . . , Kn) ∈ Seq(K), and

cutoffs 1 ≤ n1 < n2 ≤ n, then

A(K1, . . . , Kn) = A
(
K1, . . . , Kn1−1,A(Kn1 , . . . , Kn2), Kn2+1, . . . , Kn

)
(2)
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where n1 = 1 is understood that K1, . . . , Kn1−1 is the empty list, and similarly for n2 = n.

Definition 10. Fix a state space Ω, and let K be the associated set of knowledge operators.

A knowledge aggregator A : Seq(K) → K is associative if for any sequence of knowledge

operators (K1, . . . , Kn) ∈ Seq(K), and any collection of cutoffs 0 = n0 < n1 < n2 < · · · <

nk = n, then aggregating directly over the full list (K1, . . . , Kn), results in the same operator

as is obtained by a two-step process, where first we aggregate all operators over those lists

Kni+1, . . . , Kni+1 separately, and then, in the second step, aggregate the k outcomes of the

first step. Formally

A(K1, . . . , Kn) = A
(
A(K1, . . . , Kn1),A(Kn1+1, . . . , Kn2), . . . ,A(Knk−1+1, . . . , Kn)

)
(3)

Proposition 1. Fix a state space Ω, and let K be the associated set of knowledge operators.

An aggregator A : Seq(K)→ K satisfies Equation 2 if and only if it satisfies Equation 3.

Therefore the definitions of associativity given in Definitions 9 and 10 are equivalent.

Associativity implies that the aggregator is an idempotent operator; that is, AJ = A(AJ).

The classical aggregators of everybody knows, somebody knows, and distributed knowledge

are associative aggregators, as shown in Proposition 2. This is not the case for the common

knowledge aggregator, as information is, in some sense, lost during the aggregation process.

A counter-example showing common knowledge is not associative is given in Example 1.

Proposition 2. Fix a state space Ω, and let K be the associated set of knowledge operators.

The aggregators everybody knows, somebody knows, and the distributed knowledge are

associative.

Example 1. Let J = {1, 2}, Ω = {a, b, c, d}. Suppose that:

K1Ω = {a, b, c}, K1{a, b, c} = {a}, K1{a} = {a}, K1{a, b} = {a, b},

K2Ω = {a, b}, K2{a, b, c} = {a, b}, K2{a, b} = {a, b}, K2{a} = {a}.

Then:

fJΩ = {a, b, c} ∩ {a, b} = {a, b},
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fJ{a, b} = {a, b}.

Thus, for every s ∈ {1, 2, · · · }:

∧JΩ = (fJ)(s)Ω = {a, b}.

However, for J1 = {1}, J2 = {2}, we find that ∧J1Ω = {a} and ∧J2Ω = {a, b}. Therefore:

∧(∧J1 ,∧J2)Ω = {a} 6= {a, b} = ∧JΩ.

Therefore the common knowledge aggregator ∧ : Seq(K)→ K is not associative.

Where anonymity is concerned with the order of the agents, we can be equally concerned

with the labeling of the states. A knowledge operator K will, in general, be sensitive to

relabeling of the states, in the sense that for a given relabeling of the states f , then K ◦ f 6=

f ◦ K. Aggregators, however, can certainly be independent of the labeling of the states.

An aggregator is independent of the labeling of the states if relabeling the states, then

applying the aggregator, is the same as applying the aggregator then relabeling the states.

An aggregator which is independent of relabeling of the states is said to be label neutral.

Definition 11. Fix a state space Ω, and let K be the associated set of knowledge operators.

An aggregator A : Seq(K) → K is label neutral if, for any bijection f : Ω → Ω, and any

(K1, . . . , Kn) ∈ Seq(K), then

A = f−1 ◦
[
A
(
f ◦K1, . . . , f ◦Kn

)]
where we make the usual abuse of notation that f(E) = {f(ω) | ω ∈ E}.

The classical aggregators somebody knows, everybody knows and distributed knowledge

are label neutral. An aggregator will not be label neutral if it treats some states differently

to others, or, potentially, if it includes some form of composition of knowledge operators.

The aggregator in Example 3 is not label neutral as it treats states differently. The common

knowledge aggregator is not label neutral as it includes composition of knowledge operators.

An instance where the common knowledge aggregator is not label neutral is in Example 2.
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Proposition 3. Fix a state space Ω, and let K be the associated set of knowledge operators.

The classical aggregators, everybody knows, somebody knows, and distributed knowledge

are label neutral.

Example 2. Let J = {1}, Ω = {a, b, c}. Suppose that

K1{a, b, c} = {a, b}, K1{a, b} = {a}, and K1E = E otherwise

As |J | = 1, the everybody knows aggregation fJ is just fJ = K1. The common knowledge

aggregation ∧J has

∧JΩ = K1Ω ∩K1K1Ω ∩ · · · = {a, b} ∩ {a} ∩ · · · = {a}

Let f : Ω → Ω be a bijection, where f(a) = b, f(b) = c, and f(c) = a. The composition

f ◦K1 is somewhat ugly, but in particular,

(f ◦K1)(4)Ω = {b}, and (f ◦K1)(5)Ω = {c}

Therefore, for f(J) = (f ◦K1) ∈ Seq(K),

∧f(J)Ω =
∞⋂
s=1

(f ◦K1)(s)Ω

⊂ (f ◦K1)(4)Ω ∩ (f ◦K1)(5)Ω

= {b} ∩ {c} = ∅

As ∧f(J)Ω = ∅, then f−1 ∧f(J) Ω 6= ∧JΩ. Thus the common knowledge aggregator ∧ is not

label neutral.

We would also like to know under what circumstances, if any, the aggregators have the

property that when all agents have the same knowledge operator, then the aggregation

returns just this same input aggregator. An aggregator is a k-identity if, for any collection

of k agents with the same knowledge operator, then the aggregation is the same as the input

operators. An aggregator is an identity if it is a k-identity for all k. More generally, for

any subset of operators L ⊂ K, an aggregator is a k-identity on L if, for any collection of k
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agents with the same knowledge operator, where that knowledge operator is in L, then the

aggregation is the same as the input operators. Similarly for an aggregator being an identity

on L.

Definition 12. Fix a state space Ω, and let K be the associated set of knowledge operators.

Let L be a collection of knowledge operators, L ⊂ K. A knowledge aggregator A :

Seq(K)→ K is a k-identity on L if

A(L,L, . . . , L︸ ︷︷ ︸
k times

) = L

for all L ∈ L. Aggregator A is an identity on L if it is a k-identity on L for all k ∈ N.

Aggregator A is a k-identity if it is a k-identity on K, and is an identity if it is a k-identity

for all k ∈ N.

This definition states that the restriction of the aggregator to Seq(L) is the identity.

The simple classical aggregators of somebody knows and everybody knows are identities on

the full set K, while the more involved aggregators of common knowledge and distributed

knowledge are not identities on all of K. The sets L on which common knowledge and

distributed knowledge are an identity are noted in Proposition 10.

3.2 Relative Informativeness

The four classical knowledge aggregators discussed admit a natural hierarchy of how much

information they could be said to admit. Intuitively, it is very difficult for information to be

common knowledge, and very easy for information to be available as distributed knowledge.

It is much more likely that somebody knows a piece of information than that everybody

knows it. This is given in Lemma 1.

Lemma 1. Let (Ω, J, {Kj}j∈J) be a knowledge model. Then for every event E ∈ 2Ω, and

every agent j ∈ J :

∧J E ⊂ fJE ⊂ KjE ⊂ gJE ⊂ ∨JE (4)
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This hierarchy suggests an idea of positive and negative aggregators. Positive aggregators

are those that work to increase the amount that is known, while negative aggregators work

to reduce the amount that is known.6 The notion of relative informativeness of knowledge

operators is given in Definition 13. Informativeness of knowledge operators is a partial order

on the set of knowledge operators K, as it is possible that agent 1 is well-informed in one

area, while agent 2 is informed in another.

Definition 13. Fix a state space Ω, and let K be the associated set of knowledge operators.

Operator K1 ∈ K is (weakly) more informative than operator K2 ∈ K if K2E ⊂ K1E

for every event E ∈ 2Ω. Being “more informative than” is a partial order on the set of all

knowledge operators.

Definition 14. Fix a state space Ω, and let K be the associated set of knowledge operators.

An aggregator A : Seq(K) → K is (weakly) positive if for all (K1, . . . , Kn) ∈ Seq(K),

then A(K1, . . . , Kn) is more informative than Ki, for all i = 1, . . . , n.

An aggregator A : Seq(K) → K is (weakly) negative if for all (K1, . . . , Kn) ∈ Seq(K),

then Ki is more informative than A(K1, . . . , Kn), for all i = 1, . . . , n.

From Lemma 1 the distributed knowledge, ∨, and somebody knows, g, are positive

aggregators; and common knowledge, ∧, and everybody knows, f, are negative aggregators.

In fact, somebody knows, f, is the least informative aggregator which is still positive, while

everybody knows, g, is the most informative aggregator which is still negative, as shown in

Proposition 4.

Proposition 4. Fix a state space Ω, and let K be the associated set of knowledge operators.

An aggregator A : Seq(K) → K is positive if and only if for all K1, . . . , Kn ∈ Seq(K),

then A(K1, . . . , Kn) is more informative than g(K1, . . . , Kn).

An aggregator A : Seq(K) → K is negative if and only if for all K1, . . . , Kn ∈ Seq(K),

then f(K1, . . . , Kn) is more informative than A(K1, . . . , Kn).

6In applications in game theory, negative aggregators are most appropriate for modeling behavior in
competitive games, while positive aggregators are more appropriate for cooperative games.
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What happens to knowledge aggregations as new agents are added to the model? Positive

and negative aggregators differ in what could be considered a null agent to add to the model;

that is, an agent who makes no difference to the knowledge aggregation. In the case of a

positive aggregator, an extra agent who knows nothing might be considered a null agent to

add to the model. The knowledge operator associated with the agent who knows nothing

is denoted K∅, and given by K∅E = ∅ for all events E ∈ 2Ω. Conversely, for negative

aggregators, adding an agent who believes they know everything might be considered a null

agent. The knowledge operator associated with the agent who believes that they know

everything is denoted KΩ, and given by KΩE = Ω for all events E ∈ 2Ω. Positive and

negative aggregators are called natural when their aggregation does not change due to the

introduction of a null agent, as in Definition 15.

Definition 15. Fix a state space Ω, and let K be the associated set of knowledge operators.

A positive aggregator A : Seq(K) → K is naturally positive if A(K1, . . . , Kn, K∅) =

A(K1, . . . , Kn), for all (K1, . . . , Kn) ∈ Seq(K).

A negative aggregator A : Seq(K) → K is naturally negative if A(K1, . . . , Kn, KΩ) =

A(K1, . . . , Kn), for all (K1, . . . , Kn) ∈ Seq(K).

An aggregator A : Seq(K) → K is natural if it is either naturally negative, or naturally

positive.

A cursory examination shows that the classical knowledge aggregators f, ∧, g and ∨

are all natural aggregators. An example of a synthetic aggregator which is positive but not

natural is given in Example 3.

Example 3. Let Ω = {1, 2, 3, 4}, and let K be the associated set of knowledge operators.

Define the knowledge aggregator A∗ : Seq(K) → K so that for any sequence (K1, . . . , Kn) ∈

Seq(K), and event E ∈ 2Ω,

A∗(K1, . . . , Kn)E = ({n} ∩ E) ∪
n⋃
j=1

KjE

That is, A∗ asks whether any agent knows the event occurred, then adds in the number of

agents, if that state is in the event. This is an entirely synthetic aggregator.
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Clearly A∗(K1, . . . , Kn)E ⊃
⋃n
j=1 K

jE. By Proposition 4, A∗ is positive. However, A∗
is not natural in the sense of Definition 15 as, for example,

A∗(K∅)Ω = {1}, while A∗(K∅, K∅)Ω = {2}

Adding an additional agent with no information has changed the knowledge aggregation.

Aggregator A∗ is also clearly not label neutral as, for example, for any bijection f : Ω→ Ω

with f(1) 6= 1, then

f−1 ◦ A∗(f ◦K∅)Ω = f−1 ◦ A∗(K∅)Ω = f−1 ({1}) 6= {1}

So f−1 ◦ A∗(f ◦K∅) 6= A∗(K∅), and thus A is not label neutral.

Knowledge aggregation can also be investigated when agents may learn new information.

Fix a collection of agents J , and their knowledge operators {Kj : 2Ω → 2Ω, j ∈ J}. Suppose

that agents receive a positive knowledge shock, which weakly improves their knowledge. This

positive shock transforms each operator Kj, j ∈ J , into a more informed operator K̃j, j ∈ J .

Definition 16. Fix a state space Ω, and let K be the associated set of knowledge operators.

An aggregator A : Seq(K) → K is increasing if for any pair of sequences (K1, . . . , Kn),

(K̃1, . . . , K̃n) ∈ Seq(K) such that each operator K̃i is more informed than Ki, for each

i ∈ {1, · · · , n}, then the aggregation A(K̃1, . . . , K̃n) is more informed than A(K1, . . . , Kn).

Formally,(
KiE ⊂ K̃iE, for all i ∈ {1, . . . n}, E ⊂ Ω

)
=⇒

(
A(K1, . . . , Kn)E ⊂ A(K̃1, . . . , K̃n)E, for all E ⊂ Ω

)
.

While it might be expected that the four classical aggregators are all increasing, this is not

the case. The everybody knows, somebody knows, and distributed knowledge aggregators

are indeed all increasing, as in Lemma 2.

Lemma 2. The aggregators everybody knows, somebody knows, and distributed knowledge

are increasing operators.
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The common knowledge aggregator, however, is not increasing in general. Example

4 gives a pair of sequences of knowledge operators which demonstrates that the common

knowledge aggregator is not increasing. The common knowledge aggregator is increasing if

certain reasonable assumptions are made on the input knowledge operators. This is explored

in Proposition 12.

Example 4. Let Ω = {a, b, c} and operators K, K̃ ∈ K given by

K{a, b, c} = {a}, K{a, b} = ∅, KE = E otherwise

K̃{a, b, c} = {a, b}, K̃{a, b} = ∅, K̃E = E otherwise

Operators K, K̃ differ only on {a, b, c} where K{a, b, c} ⊂ K̃{a, b, c}. Thus, operator K̃ is

more informed than operator K. However, as K̃K̃{a, b, c} = ∅, the corresponding common

knowledge aggregations are

∧(K){a, b, c} = {a}, ∧(K){a, b} = ∅, ∧(K)E = E otherwise

∧(K̃){a, b, c} = ∅, ∧(K̃){a, b} = ∅, ∧(K̃)E = E otherwise

Aggregations ∧(K),∧(K̃) differ only on {a, b, c} where ∧(K){a, b, c} ⊃ ∧(K̃){a, b, c}. Thus,

operator ∧(K) is more informed than operator ∧(K̃). Therefore the common knowledge

aggregator is not an increasing aggregator in general.

If an aggregator is natural and increasing, as is the case for many of our example aggre-

gators, then the aggregator will behave nicely with the addition of new agents. In particular,

for positive aggregators, new agents will mean aggregated information is more informative

as more agents are added; while for negative aggregators, new agents will cause a reduction

in aggregated information.

Proposition 5. Fix a state space Ω, and let K be the associated set of knowledge operators.

Let (K1, . . . , Kn) ∈ Seq(K) and m < n.

If an aggregator A : Seq(K)→ K is naturally positive and increasing, then A(K1, . . . , Kn)

is more informative than A(K1, . . . , Km). Similarly, if A : Seq(K)→ K is naturally negative

and increasing, then A(K1, . . . , Km) is more informative than A(K1, . . . , Kn).
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Finally we consider a notion of stationarity for knowledge aggregators, as a counterpart

to the notion of naturalness given in Definition 15. An aggregator is natural if adding an

extreme agent does not change the knowledge aggregation. Similarly, we say an aggregator

is stationary if the aggregation does not change when adding a new agent who is both weakly

less informed than some existing agent, and weakly more informed than an existing agent.

Definition 17. Fix a state space Ω, and let K be the associated set of knowledge operators.

An aggregator A : Seq(K) → K is stationary if for any sequence J = (K1, . . . , Kn) ∈

Seq(K), and any K∗ such that K∗ is less informed than Kj1 for some j1 ∈ J , and is K∗ is

more informed than Kj2 for some j2 ∈ J , then

A(K1, . . . , Kn) = A(K1, . . . , Kn, K∗)

Stationarity is closely related to the property of being an identity. In particular, if

aggregator A is a 1-identity on some L ⊂ K, and is stationary, then it is an identity on L.

Proposition 6. Fix a state space Ω, and let K be the associated set of knowledge operators.

Let L ⊂ K, and aggregator A : Seq(K) → K be a 1-identity on L, and stationary. Then

A is an identity on L.

Each of the classical knowledge aggregators is stationary. However, fairly natural aggre-

gators need not be stationary. For example, the ‘at least two agents know’ aggregator is not

stationary.

Example 5. Let Ω = {1, 2, 3, 4}, and let K be the associated set of knowledge operators.

Define the ‘at least two agents know’ knowledge aggregator A2 : Seq(K) → K such that for

any sequence (K1, . . . , Kn) ∈ Seq(K), then for each event E ∈ 2Ω,

A2(K1, . . . , Kn)E =
⋃

i,j∈{1,...,n}
i 6=j

(
KiE ∩KjE

)
That is, A2 asks whether any pair of agents knows the event occurred.

Let K ∈ K be a knowledge aggregator with K 6= K∅. By construction A2(K) = K∅,

while A2(K,K) = K. As K is both more informed and less informed than K, and A2(K) 6=

A2(K,K), the aggregator A2 is not stationary.
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In fact, the aggregator A2 is a k-identity for all k ≥ 2; just not a 1-identity, and so not

an identity aggregator.

4 Logic Properties of Knowledge Aggregators

There are a variety of assumptions often made to restrict the available knowledge operators

to those which satisfy certain logical properties. The strongest assumption, which is also the

most common, is to restrict knowledge operators to those which admit representation by a

partition of the state space. In such a model, the state space is divided into partition, where

the agent is unable to distinguish states in the same partition element, but can distinguish

between partition elements. A weaker, but still common, assumption is the knowledge

correspondence model. In this model of knowledge, in each state of the world the agent

receives a signal which informs them of the the states they consider possible.

These restrictions on the state space are further broken down into the Modal Logic

S5 system. This is a list of five rationality assumptions which together imply a partition

representation, but which can also be investigated individually.

4.1 Partitions and Correspondences

Given a state space Ω, any partition π of the state space is a knowledge partition. A

knowledge partition π is interpreted as, if ω∗ ∈ Ω is the true state of the world, then the

agent believes that all states ω ∈ π(ω∗) are possible, and that all states ω̄ /∈ π(ω∗) are not

possible. Each knowledge partition π is associated with a knowledge operator Kπ according

to the formula

KπE = {ω ∈ Ω | π(ω) ⊂ E} (5)

This equation says that if partition π represents the agent’s information, then KπE should

be the set of states where every state the agent considers possible is contained in the event E.

We say an operator is partitional if there exists some partition which generates the operator

using Equation 5.

Definition 18. Fix a state space Ω, and let K be the associated set of knowledge operators.
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An operator K ∈ K is partitional if there exists some partition π of Ω such that K = Kπ,

where Kπ is given by Equation 5. The set of partitional operators is denoted KP .

Remark 1. A partitional knowledge operator will necessarily satisfy certain regularity con-

ditions. In particular, any partitional knowledge operator K : 2Ω → 2Ω will satisfy KΩ = Ω,

K(E ∩ F ) = KE ∩ KF , KE ⊂ E, KE ⊂ KKE and ¬KE ⊂ K(¬KE). Moreover, any

knowledge operator satisfying these properties is partitional. This will be discussed further

in Section 4.2.

Turning to the question of knowledge aggregators; if the knowledge operators of all agents

are partitional, which knowledge aggregations will also be partitional? This question has a

surprising answer. The relatively simple aggregators of somebody knows, g, and everybody

knows, f, do not preserve this property of being partitional. That is, even if all agents have

the very strong rationality property of a partitional information structure, nonetheless very

simple statements like ‘does somebody know this’ do not have such rationality properties.

Example 6 provides a simple model where this is the case. Proposition 7 shows that the

more developed aggregators of common knowledge, ∧, and distributed knowledge, ∨, are

partitional-preserving.

Definition 19. Fix a state space Ω, and let K be the associated set of knowledge operators.

An aggregator A : Seq(K) → K is partition-preserving if, for all sequences of partitional

knowledge operators (K1, . . . , Kn) ∈ Seq(KP ), the knowledge aggregation A(K1, . . . , Kn) is

also a partitional operator.

Example 6. Let J = {1, 2}, Ω = {a, b, c}, and

K1{a} = K1{b} = ∅, K1{a, c} = K1{b, c} = {c}, K1E = E otherwise

K2{b} = K2{c} = ∅, K2{a, b} = K2{a, c} = {a}, K2E = E otherwise

Operator K1 is a partitional operator given by the partition π1 = {{a, b}, {c}} according to

Equation 5. Similarly, operator K2 is a partitional operator given by the partition π2 =

{{a}, {b, c}}.
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The somebody knows aggregation gJ has

gJ({a, b} ∩ {b, c}) = gJ{b} = ∅, while

gJ{a, b} ∩gJ{b, c} = {a, b} ∩ {b, c} = {b}

As gJ({a, b} ∩ {b, c}) 6= gJ{a, b} ∩gJ{b, c}, by Remark 1, the somebody knows aggregation

gJ is not partitional in this case, and so the somebody knows aggregator g is not partitional

in general. Similarly, the everybody knows aggregation fJ has

fJ{a, b} = {a, b} ∩ {a} = {a}, and

fJ{a} = ∅ ∩ {a} = ∅.

As f{a, b} 6⊂ ff{a, b}, by Remark 1, the everybody knows aggregation fJ is not partitional

in this instance. Thus, the everybody knows aggregator f is not partitional.

Proposition 7. The aggregators common knowledge and distributed knowledge are both

partition-preserving aggregators.

The correspondence knowledge framework is a middle ground between the more general

universe of knowledge operators and the more restrictive universe of partitions. A knowledge

correspondence is a function γ : Ω → 2Ω. The usual interpretation is that, at every state

ω ∈ Ω, the agent considers as possible exactly those states in γ(ω), ruling out all states that

do not belong to γ(ω). In other words, at state ω ∈ Ω, the agent thinks that an event E is

sure to happen if and only if γ(ω) ⊂ E, and is sure that event E does not happen if and

only if E ∩ γ(ω) = ∅.

Each knowledge correspondence γ is associated with a knowledge operator Kγ according

to the formula

KγE = {ω ∈ Ω | γ(ω) ⊂ E} (6)

This equation says that if correspondence γ represents the agent’s information, then KγE

should be the set of states where every state the agent considers possible is contained in the

event E. Definition 20 states that an operator is a correspondence operator if there exists

some correspondence which generates the operator using Equation 6.
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Definition 20. Fix a state space Ω, and let K be the associated set of knowledge operators.

An operator K ∈ K is a correspondence operator if there exists some correspondence

γ : Ω→ 2Ω such that K = Kγ, where Kγ is given by Equation 6. The set of correspondence

operators is denoted KC.

An operator K : 2Ω → 2Ω is a correspondence operator so long as it satisfies KΩ = Ω,

and K(E∩F ) = KE∩KF for all events E,F ∈ 2Ω, as shown in Lemma 3. These properties

are explored further in Section 4.2.

Lemma 3. Fix a state space Ω, and let K be the associated set of knowledge operators.

An operator K ∈ K is a correspondence operator if and only if KΩ = Ω and K(E∩F ) =

KE ∩KF for all events E,F ∈ 2Ω.

The correspondence framework is a strict generalization of the partition framework.

Lemma 4 shows that any knowledge partition is just a knowledge correspondence γ that

satisfies the additional properties that:

P.1: ω ∈ γ(ω), for every ω ∈ Ω.

P.2: For every ω, ω′ ∈ Ω, the sets γ(ω) and γ(ω′) either coincide or have no element in

common.

Lemma 4. Fix a state space Ω, and let K be the associated set of knowledge operators.

Let γ : Ω → 2Ω be a knowledge correspondence, and suppose γ satisfies properties P.1

and P.2. Then, Kγ is partitional. In general, KC ⊂ KP .

Turning again to the question of knowledge aggregation; if the knowledge operators of

all agents are correspondence operators, which knowledge aggregations will also be corre-

spondence operators? As seen in Example 6, the somebody knows aggregator g does not

preserve the property of being a correspondence operator, as in that example all input oper-

ators were partitional, so were also correspondence operators by Lemma 4, while the output

operator failed to have K(E ∩ F ) = KE ∩ KF , so was not a correspondence operator by

Lemma 3. The remaining classical aggregators common knowledge, distributed knowledge

and everybody knows all preserve the property of being a correspondence operator.
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Definition 21. Fix a state space Ω, and let K be the associated set of knowledge operators.

An aggregator A : Seq(K) → K is correspondence-preserving if, for all sequences of

correspondence knowledge operators (K1, . . . , Kn) ∈ Seq(KC), the knowledge aggregation

A(K1, . . . , Kn) is also a correspondence operator.

Proposition 8. The aggregators common knowledge, distributed knowledge, and everybody

knows, are all correspondence-preserving aggregators.

4.2 Modal Logic’s S5 Axioms

The partitional and correspondence assumptions on knowledge operators are representation

assumptions which do not, within their definition, contain clear information on what aspects

of rationality are being assumed, nor do they make clear why we might think an agent

would be partitional or have a correspondence operator. The S5 logic system is a series of

rationality assumptions which are direct restrictions of the knowledge operator itself and are

individually justifiable to some extent. While a modeler might hope that their agent will

satisfy each of the S5 axioms, evidence from behavioral economics seems to suggest that

these axioms are regularly broken in practice.

K.0 (Awareness). Let K0 = {K ∈ K | KΩ = Ω}.

Awareness requires that, at every state, agent j knows that event Ω occurs. This property

rules out the existence of subjective states. Agents know perfectly well the state space.

K.1 (Monotonicity). Let K1 = {K ∈ K | K(E ∩ F ) ⊂ KE ∩KF , E,F ∈ 2Ω}.

Monotonicity is equivalent to the requirement that E ⊂ F ⇒ KjE ⊂ KjF , for all E,F ∈

2Ω. This property states that if a agent knows a specific event has occurred, then she

knows that a more general event has also occurred. Monotonicity will be one of the main

assumptions questioned here.

K.2 (Conjunction). Let K2 = {K ∈ K | K(E ∩ F ) ⊃ KE ∩KF , E,F ∈ 2Ω}.

Conjunction is a rationality condition on the agents. It states that if a agent knows

that events E and F happen individually, then she knows that the specific event that is the

intersection of E and F has indeed occurred.
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K.3 (Truth). Consider K3 = {K ∈ K | KE ⊂ E, E ∈ 2Ω}.

This property says that if agent j knows event E, then E occurs; that is, j can only learn

truths.

K.4 (Transparency). Let K4 = {K ∈ K | KE ⊂ KKE, E ∈ 2Ω}.

Some authors refer to this property as positive introspection. It indicates that agents are

aware of their own knowledge.

K.5 (Wisdom). Let K5 = {K ∈ K | ¬KE ⊂ K(¬KE), E ∈ 2Ω}.

Some authors refer to this as negative introspection. It indicates that agents are aware

of their own limitations.

If an agent’s knowledge operator satisfies all the S5 axioms, then it is a partitional

operator in the style of Definition 18. Similarly, any partitional operator will satisfy all the

S5 axioms. This was mentioned earlier in Remark 1, and is proven as the main result of

Bacharach [3].

Proposition 9. (Bacharach’s Partition Theorem [3]) A knowledge operator K satisfies all

S5 axioms if and only if it is a partitional operator. That is

KP = K0 ∩ K1 ∩ K2 ∩ K3 ∩ K4 ∩ K5

Similarly, Lemma 3 states that an operator is a correspondence operator if and only if it

satisfies Omniscience, Monotonicity, and Conjunction. That is

KC = K0 ∩ K1 ∩ K2

We promised earlier to give the collections L ⊂ K on which the classical aggregators

are an identity. As noted, the simple aggregators everybody knows and somebody knows

are identities on all of K. The common knowledge aggregator is an identity on K4. The

distributed knowledge aggregator is an identity on KC .

Proposition 10. Fix a state space Ω, and let K be the associated set of knowledge operators.

Aggregators everybody knows and somebody knows are identities on K. The common

knowledge aggregator is an identity on K4. The distributed knowledge aggregator is an iden-

tity on KC.
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In Section 4.1 we discussed whether aggregators had preservation properties in terms of

partitional and correspondence operators. The same questions can be asked with regard to

each of the S5 axioms. That is, if the knowledge operators of all agents satisfy any of the S5

properties, which knowledge aggregations will also satisfy this property? A related property

is that of ‘forcing’. A aggregator ‘forces’ a property if the aggregation necessarily has some

property, even if the input operators do not have this property. More generally, we can talk

about L-preserving, and L-forcing aggregators for any subset of knowledge operators L ⊂ K.

Definition 22. Fix a state space Ω, let K be the associated set of knowledge operators, and

L ⊂ K.

An aggregator A : Seq(K)→ K is L-preserving if, for all sequences of knowledge operators

(K1, . . . , Kn) ∈ Seq(L), the knowledge aggregation A(K1, . . . , Kn) is also in L.

Definition 23. Fix a state space Ω, let K be the associated set of knowledge operators, and

L ⊂ K.

An aggregator A : Seq(K) → K is L-forcing if, for all sequences of knowledge operators

(K1, . . . , Kn) ∈ Seq(K), the knowledge aggregation A(K1, . . . , Kn) is in L.

Clearly if L is forced by some aggregator A, then it is also preserved by A. Proposition

11 contains a complete classification of the classical aggregators are either L-preserving, L-

forcing, or neither, for the sets of knowledge operators satisfying each of the S5 axioms. While

both distributed knowledge and common knowledge preserve the S5 axioms collectively, as in

Proposition 7, only the distributed knowledge preserves the axioms individually. Surprisingly,

the common knowledge aggregator does not force, or even preserve, the Positive Introspection

property. This last fact is explored in greater detail in Chapter 2.

Proposition 11. Table 1 indicates which properties are preserved or forced by the various

aggregators. An entry “P” in the row of L and column of aggregator A indicates that A

preserves L. An entry “F” in such location indicates that A forces L. An entry of “No”

indicates that it does neither.
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∨ g f ∧

K0 F P P P

K1 F P P P

K2 F No P No

K3 P P P P

K4 P No No No

K5 P No No No

Table 1: S5 Preservation

4.3 Monotonicity

The Monotonicity axiom, K.1., which states that whenever E ⊂ F , then KE ⊂ KF , can

be considered to be a very reasonable assumption on the set of knowledge operators. All

Monotonicity requires is that if an event E is a sub-event of F , then whenever the agent

knows the sub-event E, they also know the super-event F . This axiom can be considered

reasonable, but is also an extremely powerful assumption for producing more regular results.

This short section assumes Monotonicity of all knowledge operators, in order to produce

stronger results on the knowledge aggregators. Lemma 5 gives a more concise form of the

distributed knowledge aggregator. Lemma 6 shows that the somebody knows aggregator pre-

serves Positive Introspection. Proposition 12 shows that the common knowledge aggregator

is increasing.

If all agents’ knowledge operators satisfy Monotonicity, then the distributed knowledge

aggregator ∨ admits a much cleaner representation.

Lemma 5. Fix a state space Ω, and let K be the associated set of knowledge operators.

Let ∨ : Seq(K) → K be the distributed knowledge aggregator given by Equation 1. Let

(K1, . . . , Kn) ∈ Seq(K1) so that all operators satisfy Monotonicity. Then for all events
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E ∈ 2Ω,

∨ (K1, . . . , Kn)E =
⋂
ω̄ /∈E

⋃
j∈J

Kj¬{ω̄} (7)

The somebody knows aggregator g does not, in general, preserve Positive Introspection.

However, if all aggregators a Monotonic as well as satisfy Positive Introspection, then the

somebody knows aggregation will also have Positive Introspection, as in Lemma 6. This is

a useful result for proving that distributed knowledge preserves K4.

Lemma 6. Fix a state space Ω, let K be the associated set of knowledge operators.

If all operators are Monotonic, then the somebody knows aggregator g preserves axiom

K.4. That is, for any sequence (K1, . . . , Kn) ∈ Seq(K1 ∩ K4) then g(K1, . . . , Kn) ∈ K4.

As noted in Section 3.2, the common knowledge aggregator is not, in general, an increas-

ing aggregator. In the example given to show this, Example 4, the knowledge operator of

the agent did not satisfy Monotonicity. This is indicative of a more general result. Indeed,

if all operators are Monotonic, then the common knowledge aggregator is increasing, as in

Proposition 12.

Proposition 12. If all operators are Monotonic, then the common knowledge aggregator ∧

is increasing.

4.4 Cognitive Dissonance

Consider the following property of operators, which prevents behavior that could be thought

of as a form of cognitive dissonance. In the Modal Logic literature this is called Axiom D.

Definition 24. Fix a state space Ω, and let K be the associated set of knowledge operators.

An operator K ∈ K satisfies Axiom D if for all E ∈ 2Ω, then KE ∩K¬E = ∅. The set

of operators satisfying Axiom D is denoted KD.

KD = {K ∈ K | KE ∩K¬E = ∅ for all E ∈ 2Ω}

An operator satisfying Axiom D is described as being non-dissonant.
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An operator satisfies Axiom D if there is no state at which the agent knows that some

event E both has, and has not, occurred. It is immediate that the axiom of Truth implies

Axiom D, K3 ⊂ KD. Moreover, if K∅ = ∅ and K ∈ K2, then K ∈ KD because KE∩K¬E ⊂

K(E ∩ ¬E) = K∅ = ∅.

Combined, these two properties reveal that Axiom D is a mild requirement on operators.

Intuitively speaking, operators which are not non-dissonant are relatively far from partitional

operators.

Definition 25. Fix a state space Ω, and let K be the associated set of knowledge operators.

An aggregator A : Seq(K) → K preserves Axiom D if for any sequence (K1, . . . , Kn) ∈

Seq(K) such that each Ki ∈ KD, then A(K1, . . . , Kn) ∈ KD.

Every negative aggregator A : Seq(K)→ K preserves Axiom D. This is fairly immediate

as negative aggregators shrink what is known, and if less is known, then it is easier for

Axiom D to be satisfied. Moreover, if at least one agent being aggregated by a negative

aggregator satisfies Axiom D, then the resulting aggregation will also satisfy Axiom D.

Common knowledge and everybody knows is particular preserve Axiom D.

Proposition 13. Fix a state space Ω, and let K be the associated set of knowledge operators.

Let A : Seq(K) → K be a negative aggregator. Then, A preserves Axiom D. Moreover, for

(K1, . . . , Kn) ∈ Seq(K) such that Ki ∈ KD for at least one i = 1, . . . , n, then A(K1, . . . , Kn)

satisfies Axiom D.

However, in the absence of other properties, even the minimally positive aggregator,

somebody knows, does not preserve non-dissonance, as in Example 7. Moreover, every

positive aggregator does not preserve non-dissonance, as in Proposition 14.

Example 7. Let Ω = {a, b}, J = {1, 2}. Define K1E = E, for every event E ⊂ Ω. Let

K2{a} = {b}, K2{b} = {a}, K2∅ = ∅, and K2Ω = Ω. In this case, K1 ∈ KD, K2 ∈ KD, but

gJ{a} = gJ{b} = Ω, violating Axiom D.

Proposition 14. Fix a state space Ω, with |Ω| ≥ 2, and let K be the associated set of

knowledge operators.

30



Let A : Seq(K)→ K be a positive aggregator. Aggregator A does not preserve Axiom D.

5 Knowledge Modeling through Collections of Events

So far we have been working with knowledge operators K : 2Ω → 2Ω with the interpretation

that for each event E, that KE is the set of states where the agent knows E has occurred.

An alternative formalism is to take a function E : Ω→ 22Ω
mapping states to collections of

events. The interpretation is that E(ω) contains those events the agent considers possible

when the true state is ω. Equation 8 formalizes the link between knowledge represented

as collections of known events E , and knowledge represented using a knowledge operator

K. Proposition 15 shows that these formulations are equivalent. This alternative approach

gives two main advantages, i) for proofs it is occasionally more useful to work in terms of

collections of known events, and ii) for intuition and interpretation it can be helpful to have

another way of thinking about the problem.

Fix a non-empty, finite state space Ω. Consider a knowledge operator K : 2Ω → 2Ω. For

each ω ∈ Ω, define the collection of all known events at ω, denoted EK(ω), by

EK(ω) = {E ∈ 2Ω | ω ∈ KE} (8)

The collection EK(ω) may be empty. However, if KΩ = Ω, then Ω ∈ EK(ω) because

ω ∈ Ω = KΩ. In particular, if K is a correspondence operator, by Lemma 3, KΩ = Ω, so

Ω ∈ EK(ω) for all ω ∈ Ω.

Moreover, suppose K : 2Ω → 2Ω is a correspondence operator represented by the corre-

spondence γ : Ω→ 2Ω, so that K = Kγ in the sense of Definition 20. Then the collection of

known events function EKγ takes the form

EKγ (ω) = {E ∈ 2Ω | ω ∈ KγE} = {E ∈ 2Ω | γ(ω) ⊂ E}

Equation 8 describes how to transform a knowledge operatorK : 2Ω → 2Ω into a collection

of events for each state. This is a mapping from knowledge operators to functions taking

each state ω ∈ Ω into a collection of events where E ∈ EK(ω) if and only if ω ∈ KE.
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In the opposite direction, consider any arbitrary function E : Ω → 22Ω
taking states

into collections of events. From this function it is possible to define a knowledge operator

KE : 2Ω → 2Ω, as follows. For every event E ∈ 2Ω, define KEE by:

KEE = {ω ∈ Ω | E ∈ E(ω)} (9)

This means that E ∈ E(ω) if and only if ω ∈ KEE. Moreover, these transformations are

inverse functions, as shown in Proposition 15.

Proposition 15. Fix a state space Ω and let K be the associated set of knowledge operators.

Consider the mapping taking each knowledge operator K : 2Ω → 2Ω into a function

EK : Ω → 22Ω
, according to Equation 8. Consider another mapping taking a function

E : Ω → 22Ω
into a knowledge operator KE : 2Ω → 2Ω, according to Equation 9. These

two mappings are inverse functions. That is, for every function E : Ω → 22Ω
and state

ω ∈ Ω:

EKE (ω) = E(ω)

and for every knowledge operator K ∈ K and event E ∈ 2Ω:

KEKE = KE

The next result explains how these mappings act on Boolean set operations.

Proposition 16. Suppose that ~ represents the Boolean set operation of union or inter-

section. Consider two knowledge operators K1 : 2Ω → 2Ω and K2 : 2Ω → 2Ω. Define the

knowledge operator K1 ~K2 : 2Ω → 2Ω, at each E ∈ 2Ω by:

(K1 ~K2)E = K1E ~K2E

The mapping taking knowledge operators K : 2Ω → 2Ω into functions EK : Ω → 22Ω

preserves the set operation ~. Formally, for every pair of knowledge operators K1 : 2Ω → 2Ω

and K2 : 2Ω → 2Ω, and for every ω ∈ Ω:

EK1~K2(ω) = EK1(ω) ~ EK2(ω)
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Consider a knowledge aggregator A : Seq(K) → K. Exploring the bijection between

knowledge operators K : 2Ω → 2Ω and functions E : Ω → 22Ω
, it is possible to define

aggregators by establishing how they act on all finite sequences of functions E : Ω→ 22Ω
.

Let E be the set of all functions E : Ω→ 22Ω
. Let Seq(E) be the set of finite sequences of

functions E : Ω → 22Ω
. A C-aggregator is a function A : Seq(E) → E . The letter C stands

for “collection”.

Given an aggregator A : Seq(K)→ K, it is possible to defined its associated C-aggregator

as follows. Consider any finite sequence of functions Ej : Ω → 22Ω
, where j ∈ J =

{1, 2, · · · , |J |}. Define knowledge operators Kj : 2Ω → 2Ω, for each j ∈ J , pointwise,

via Equation 9, by:

KjE = KEjE = {ω ∈ Ω | E ∈ Ej(ω)}

From the sequence (K1, · · · , K |J |), compute the knowledge aggregation A(K1, · · · , K |J |).

Applying Equation 8 to A(K1, · · · , K |J |) gives

A(E1, · · · , E|J |) = EA(K1,··· ,K|J|) = EA
(
KE1 ,··· ,KE|J|

)
where, for each state ω ∈ Ω,

EA(K1,··· ,K|J|)(ω) = {E ⊂ Ω | ω ∈ A(K1, · · · , K |J |)E}

Another way to understand this process is the following. Fix any arbitrary finite sequence

of knowledge operators (K1, · · · , K |J |), where Kj : 2Ω → 2Ω, for all j ∈ J . First, apply the

aggregator A : Seq(K) → K to the sequence (K1, · · · , K |J |). Thus, A(K1, · · · , K |J |) : 2Ω →

2Ω is a knowledge operator. Then apply Equation 8 to A(K1, · · · , K |J |) : 2Ω → 2Ω to find

the function EA(K1,··· ,K|J|) : Ω→ 22Ω
.

Alternatively, start with the same sequence of knowledge operators (K1, · · · , K |J |) and

apply the Equation 8 to each Kj : 2Ω → 2Ω, with j ∈ J . This leads to the sequence

(E1, · · · , E|J |) ∈ Seq(E), where Ej(ω) = EKj(ω), for all ω ∈ Ω. Then take the sequence

(E1, · · · , E|J |) and apply the C-aggregator A : Seq(E) → E . The result is the same function

from Ω to 22Ω
. That is

A(E1, · · · , Em) = EA(K1,··· ,Km)
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The C-aggregator A is defined so that Figure 1 commutes. Let f : K → Ē be the

mapping given by Equation 8. Let Seq(f) : Seq(K) → Seq(Ē) be the mapping such that

Seq(f)(K1, . . . , Kn) = (f(K1), . . . , f(Kn)).

Seq(K) K

Seq(Ē) Ē

A

Seq(f) f

A

Figure 1: Aggregation commutes

Such a C-aggregator which makes Figure 1 commute certainly exists, as, by Proposition

15, the mappings f and therefore Seq(f), are bijective.

In some cases the C-aggregator corresponding to a particular knowledge aggregator has

an explicit formulation. In particular, Lemma 7 gives an explicit form of the C-aggregator

corresponding to distributed knowledge.

Consider a knowledge model (Ω, J, (Kj)j∈J), and fix any ω ∈ Ω and j ∈ J . Let Ej
∗(ω) be

the intersection over all events in EKj(ω). Formally

Ej
∗(ω) =

⋂
E∈E

Kj
(ω)

E (10)

If ω is the true state, and operator Kj satisfies Conjunction, the event Ej
∗(ω) would be the

set of states agent j considers possible when the true state is ω. Similarly, let EJ
∗ be the

intersection over all events in EKj(ω) for all j ∈ J . Formally

EJ
∗ (ω) =

⋂
j∈J

Ej
∗ =

⋂
j∈J

⋂
E∈E

Kj
(ω)

E (11)

If ω is the true state, and all agents’ operators satisfy Conjunction, the event EJ
∗ (ω) would

be the set of states which all agents consider possible.
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Lemma 7. Let (Ω, J, (Kj)j∈J) be a knowledge model. The collection of known events for the

distributed knowledge aggregation E∨J (ω) is the collection of supersets of EJ
∗ (ω). That is,

E∨J (ω) = {E ∈ 2Ω | E ⊃ EJ
∗ (ω)} (12)

Example 8 illustrates the preceding discussion.

Example 8. Let (Ω, J, (Kj)j∈J) be a knowledge model, with Ω = {a, b, c} and J = {1, 2}.

Let the knowledge operators K1, K2 : 2Ω → 2Ω be defined by

E ∅ {a} {b} {c} {a, b} {a, c} {b, c} Ω

K1E ∅ {a} {b, c} {c} {a} {a} {b} Ω

K2E ∅ ∅ ∅ ∅ {a, b} {a, c} {b, c} Ω

The collections of known events EK1 and EK2 are then

ω a b c

EK1(ω) {Ω, {a}, {a, b}, {a, c}} {Ω, {b}, {b, c}} {Ω, {b}, {c}}

EK2(ω) {Ω, {a, b}, {a, c}} {Ω, {a, b}, {b, c}} {Ω, {a, c}, {b, c}}

While here we constructed EK1 from K1, it is straightforward to check that if we apply

Equation 9 to EK1, then we return to K1. Similarly for EK2 and K2.

We can also use Lemma 7 to find the C-aggregator associated with the distributed knowl-

edge aggregator. The values of Ej
∗ and EJ

∗ , and the resulting function E∨J of Equation 12

are

ω a b c

E1
∗(ω) {a} {b} ∅

E2
∗(ω) {a} {b} {c}

EJ
∗ (ω) {a} {b} ∅

E∨J (ω) {Ω, {a}, {a, b}, {a, c}} {Ω, {b}, {a, b}, {b, c}} 2Ω
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A Proofs

This appendix contains the remaining proofs. Many proofs presented rely on the notation,

and sometimes results, from Section 5. Readers are encouraged to read Section 5 prior to

reading the proofs.

In most cases the proofs are presented in the order they appear in the main text. When

proofs rely on propositions stated later in the text, the proof has been moved so that each

proof relies only on proofs already given. In particular, Proposition 7 follows Proposition

8, which follows Proposition 11. Lemma 3 follows Proposition 9, and Lemma 6 precedes

Proposition 11. All results of Section 5, namely Propositions 15 and 16 and Lemma 7, are

moved to the front.

Proof of Proposition 15:

First show EKE = E for all E : Ω→ 22Ω
. Fix a function E : Ω→ 22Ω

and state ω ∈ Ω. By

Equation 9, the operator KE ∈ K is given by

KEE = {ω ∈ Ω | E ∈ E(ω)}

By Equation 8, the function EKE : Ω→ 22Ω
is given by

EKE (ω) = {E ∈ 2Ω | ω ∈ KEE} = {E ∈ 2Ω | E ∈ E(ω)} = E(ω)

As this is true for all ω ∈ Ω, then EKE = E .

Similarly, show KEK = K for all operators K ∈ K. Fix an operator K ∈ K and event

E ∈ 2Ω. By Equation 8, the function E : Ω→ 22Ω
is given by

EK(ω) = {E ∈ 2Ω | ω ∈ KE}

By Equation 9, the operator KEK ∈ K is given by

KEKE = {ω ∈ Ω | E ∈ EK(ω)} = {ω ∈ Ω | ω ∈ KE} = KE

As this is true for all E ∈ 2Ω, then KEK = K, as required.
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Proof of Proposition 16:

By definition, the following statements are equivalent:

E ∈ EK1~K2(ω)

⇐⇒ ω ∈ (K1 ~K2)E

⇐⇒ ω ∈ K1E ~K2E.

If ~ = ∪ (the union), the last statement means that ω ∈ K1E ∪ K2E, so ω ∈ K1E or

ω ∈ K2E. If ~ = ∩ (the intersection), the last statement means that ω ∈ K1E ∩K2E, con-

sequently ω ∈ K1E and ω ∈ K2E. But ω ∈ K1E if and only if E ∈ EK1(ω). Also, ω ∈ K2E

if and only if E ∈ EK2(ω). Hence, E ∈ EK1(ω) ~ EK2(ω). This proves E ∈ EK1~K2(ω) if and

only if E ∈ EK1(ω) ~ EK2(ω).

Proof of Lemma 7:

Let (Ω, J, (Kj)j∈J) be a knowledge model, and ω ∈ Ω. The set E∨J (ω) is given by

Equation 8 as

E∨J (ω) = {E ∈ 2Ω | ω ∈ ∨JE}

Let Ê∨J (ω) be the set given in Equation 12. That is

Ê(ω) = {E ∈ 2Ω | E ⊃ EJ
∗ (ω)}

The content of the lemma is to show that E∨J (ω) = Ê(ω). It will be enough to show that

E ∈ E∨J (ω) if and only if E ∈ Ê(ω). That is, we want to show

ω ∈ ∨JE ⇐⇒ E ⊃ EJ
∗ (ω)

where EJ
∗ (ω) is defined in Equations 10 and 11. Expanding the definition of ∨J from Equation

1, and writing in terms of existential quantifiers gives,

ω ∈ ∨(K1, . . . , Kn)E

⇐⇒ ω ∈
⋂
ω̄ /∈E

⋃
F⊂¬{ω̄}

⋃
j∈J

KjF

⇐⇒
[
∀ω̄ /∈ E, ∃j ∈ J, F ⊂ ¬{ω̄} such that ω ∈ KjF

]
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Using the definition that ω ∈ KjF if and only if F ∈ EKj(ω), and rearranging conditions
yields,

⇐⇒ [∀ω̄ /∈ E, ∃j ∈ J, F ⊂ ¬{ω̄} such that F ∈ EKj(ω)]

⇐⇒ [∀ω̄ /∈ E, ∃j ∈ J, F ∈ EKj(ω) such that ω̄ /∈ F ]

Rearranging the logic and taking the contrapositive produces,

⇐⇒ [(ω̄ /∈ E) =⇒ (∃j ∈ J, F ∈ EKj(ω) such that ω̄ /∈ F )]

⇐⇒ [(∀j ∈ J, F ∈ EKj(ω) with ω̄ ∈ F ) =⇒ (ω̄ ∈ E)]

and putting back in set notation obtains,

⇐⇒

ω̄ ∈ ⋂
j∈J

⋂
F∈E

Kj
(ω)

F =⇒ ω̄ ∈ E


⇐⇒

⋂
j∈J

⋂
F∈E

Kj
(ω)

F ⊂ E


⇐⇒ E ⊃ EJ

∗ (ω)

as required.

Proof of Proposition 1:

Suppose aggregator A satisfies Equation 3. Let x, y, z ∈ Seq(K) be sequences of knowl-

edge operators. As A satisfies Equation 3, A(x,A(y), z) = A(A(x),A(A(y)),A(z)). If A sat-

isfies Equation 3, then for n1 = 1 and n2 = n, we have A(K1, . . . , Kn) = A(A(K1, . . . , Kn)).

That is, the aggregator A is idempotent. In particular, A(A(y)) = A(y) as y ∈ Seq(K).

Therefore A(A(x),A(A(y)),A(z)) = A(A(x),A(y),A(z)). Applying Equation 3 again gives

A(A(x),A(y),A(z)) = A(x, y, z)

Therefore A(x, y, z) = A(x,A(y), z) as required.

Suppose aggregator A satisfies Equation 2. Let (K1, . . . , Kn) ∈ Seq(K) be a sequence

of knowledge operators, and 0 = n0 < n1 < · · · < nk = n. As A satisfies Equation 2, for
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x = (K1, . . . , Kn1), y = (Kn1+1, . . . , Kn2), and z = (Kn2+1, . . . , Kn), then

A(K1, . . . , Kn) = A(K1, . . . , Kn1 ,A(Kn1+1, . . . , Kn2), Kn2+1, . . . , Kn)

Similarly, for

x = (K1, . . . , Kn1 ,A(Kn1+1, . . . , Kn2)), y = (Kn2+1, . . . , Kn3), and z = (Kn3+1, . . . , Kn)

then

A(K1, . . . , Kn) = A(K1, . . . , Kn1 ,A(Kn1+1, . . . , Kn2),A(Kn2+1, . . . , Kn3), Kn3+1, . . . , Kn)

Continuing in this manner we have

A(K1, . . . , Kn) = A(K1, . . . , Kn1 ,A(Kn1+1, . . . , Kn2), . . . ,A(Knk−1+1, . . . , Kn))

Finally for x is the empty list,

y = (K1, . . . , Kn1), and z = (A(Kn1+1, . . . , Kn2), . . . ,A(Knk−1+1, . . . , Kn))

then

A(K1, . . . , Kn) = A(A(K1, . . . , Kn1),A(Kn1+1, . . . , Kn2), . . . ,A(Knk−1+1, . . . , Kn))

so A satisfies Equation 3, as required.

Proof of Proposition 2:

Let J ∈ Seq(K), and J = J1 ◦ · · · ◦ Jn be a breakdown of the agents into n shorter lists

J1, . . . , Jn.

The everybody knows aggregator f is associative as

fJE =
⋂
j∈J

KjE

=
n⋂
i=1

⋂
j∈Ji

KjE

=
n⋂
i=1

fJiE = f(fJ1 , . . . ,fJn)E

39



Similarly, the somebody knows aggregator g is associative as

gJE =
⋃
j∈J

KjE

=
n⋃
i=1

⋃
j∈Ji

KjE

=
n⋃
i=1

gJiE = g(gJ1 , . . . ,gJn)E

Showing the distributed knowledge aggregator ∨ is associative is somewhat more

involved. The notation and results of Section 5 are used for this proof. As the mapping

given by Equation 8 is a bijection, as noted in Proposition 15, to show that ∨ is associative

it is sufficient to show that

E∨J = E∨(∨J1 ,...,∨Jn ))

Fix ω ∈ Ω. By Lemma 7,

E∨(K1,...,Kn)(ω) = {E ∈ 2Ω | E ⊃ EJ
∗ (ω)}

where

EJ
∗ (ω) =

⋂
j∈J

⋂
F∈E

Kj
(ω)

F

Similarly,

E∨(∨J1 ),...,∨Jn ))(ω) = {E ∈ 2Ω | E ⊃ E∗∗(ω)}

where

E∗∗(ω) =
n⋂
i=1

⋂
F∈E∨Ji (ω)

F

In particular, if EJ
∗ = E∗∗, then E∨(K1,...,Kn)(ω) = E∨(∨J1 ),...,∨Jn ))(ω).

From Equation 12, E∨Ji (ω) = {E ∈ 2Ω | E ⊃ EJi
∗ (ω)} for each Ji, where EJi

∗ (ω) =⋂
j∈Ji E

j
∗(ω). Therefore

E∗∗(ω) =
n⋂
i=1

⋂
F∈E∨Ji (ω)

F =
n⋂
i=1

⋂
F |F⊃EJi∗ (ω)

F
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As the intersection over the supersets of some set X is just the set X itself,

n⋂
i=1

⋂
F |F⊃EJi∗ (ω)

F =
n⋂
i=1

EJi
∗

Substituting the definition of EJi
∗ (ω) gives

n⋂
i=1

EJi
∗ =

n⋂
i=1

⋂
j∈Ji

⋂
F∈E

Kj
(ω)

F

Finally as J1, . . . , Jn partition the list J ,

n⋂
i=1

⋂
j∈Ji

⋂
F∈E

Kj
(ω)

F =
⋂
j∈J

⋂
F∈E

Kj
(ω)

F = EJ
∗ (ω)

which is to say

E∗∗(ω) = EJ
∗ (ω)

as required.

Proof of Proposition 3:

Let (Ω, J, {Kj}j∈J} be a knowledge model. Let f : Ω → Ω be a bijection. For an event

E ∈ 2Ω, we abuse notation and write

f(E) = {f(ω) ∈ Ω | ω ∈ E}

and similarly for f−1. This means f−1(f(E)) = f(f−1(E)) = E for all E ∈ 2Ω. As f is

a bijection on Ω, it distributes over unions and intersections in the sense that f(E ∪ F ) =

f(E)∪f(F ) and f(E∩F ) = f(E)∩f(F ) for all E,F ∈ 2Ω. The ability to move the function

f freely across unions and intersections drives the remainder of the proof.
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Consider the somebody knows aggregator g. For any E ∈ 2Ω,

f−1 ◦
[
g
(
f ◦K1, . . . , f ◦Kn

)]
E = f−1

(⋃
j∈J

f(KjE)

)

= f−1

(
f

(⋃
j∈J

KjE

))
=
⋃
j∈J

KjE = g(K1, . . . , Kn)E

As this hold for all E ∈ 2Ω, the somebody knows aggregator is label neutral.

Next, consider the everybody knows aggregator f. For any E ∈ 2Ω,

f−1 ◦
[
f
(
f ◦K1, . . . , f ◦Kn

)]
E = f−1

(⋂
j∈J

f(KjE)

)

= f−1

(
f

(⋂
j∈J

KjE

))
=
⋂
j∈J

KjE = f(K1, . . . , Kn)E

As this hold for all E ∈ 2Ω, the everybody knows aggregator is label neutral.

Next, consider the distributed knowledge aggregator ∨. For any E ∈ 2Ω,

f−1 ◦
[
∨
(
f ◦K1, . . . , f ◦Kn

)]
E = f−1

⋂
ω̄ /∈E

⋃
F⊂¬{ω̄}

⋃
j∈J

f(KjF )


= f−1

f
⋂
ω̄ /∈E

⋃
F⊂¬{ω̄}

⋃
j∈J

KjF


=
⋂
ω̄ /∈E

⋃
F⊂¬{ω̄}

⋃
j∈J

KjF

= ∨(K1, . . . , Kn)E

As this hold for all E ∈ 2Ω, the distributed knowledge aggregator is label neutral.

Proof of Lemma 1:

First we show ∧JE ⊂ fJE.

∧JE =
∞⋂
s=1

(fJ)(s)E = fJE ∩
∞⋂
s=2

(fJ)(s)E ⊂ fJE.
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Next, we show fJE ⊂ KjE for each j ∈ J . Fix i ∈ J , then

fJE =
⋂
j∈J

KjE ⊂ KiE.

Third, we show KjE ⊂ gJE for all j ∈ J . Again, fix i ∈ J , then

KiE ⊂
⋃
j∈J

KjE = gJE.

Finally, we show gJE ⊂ ∨JE. Let ω ∈ gJE =
⋃
j∈J K

jE. Fix a state ω̄ /∈ E. As E ⊂ ¬{ω̄},

therefore ω ∈
⋃
F⊂¬{ω̄}

⋃
j∈J K

jF . Since this is true for each ω̄ /∈ E, we have that

ω ∈
⋂
ω̄ /∈E

⋃
F⊂¬{ω̄}

⋃
j∈J

KjF

and so, gJE ⊂ ∨JE.

Proof of Proposition 4:

Let A : Seq(K) → K be an aggregator. Fix J ∈ Seq(K) and E ∈ 2Ω. Suppose AJE ⊃

gJE =
⋃
j∈J K

jE. As AJE is a superset of the union over all KjE, it is a superset of each

KjE. As this is true for all J ∈ Seq(K) and E ∈ 2Ω, therefore A is positive. Similarly,

fix J ∈ Seq(K) and E ∈ 2Ω and suppose A is positive, so that AJE ⊃ KjE for each agent

j ∈ J . Then certainly AJE ⊃
⋃
j∈J K

jE = gJE. Overall, A is positive if and only if AJ is

more informative than gJ .

Let A : Seq(K) → K be an aggregator. Fix J ∈ Seq(K) and E ∈ 2Ω. Suppose

AJE ⊂ fJE =
⋂
j∈J K

jE. As AJE is a subset of the intersection over all KjE, it is a

subset of each KjE. As this is true for all J ∈ Seq(K) and E ∈ 2Ω, therefore A is negative.

Similarly, fix J ∈ Seq(K) and E ∈ 2Ω and suppose A is negative, so that AJE ⊂ KjE for

each agent j ∈ J . Then certainly AJE ⊃
⋂
j∈J K

jE = fJE. Overall, A is negative if and

only if AJ is less informative than gJ .

Proof of Lemma 2:
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Fix a state space Ω and associated set of knowledge operators K. Throughout this proof,

let (K1, . . . , Kn), (K̃1, . . . , K̃n) ∈ Seq(K) such that each K̃i is more informed than each Ki.

That is, suppose KiE ⊂ K̃iE for all events E ∈ 2Ω and i = 1, . . . , n.

Consider the somebody knows aggregator g. For any E ∈ 2Ω,

g
(
K1, . . . , Kn

)
E =

n⋃
i=1

KiE

⊂
n⋃
i=1

K̃iE

= g
(
K̃1, . . . , K̃n

)
E

As this hold for all E ∈ 2Ω, the somebody knows aggregator is increasing.

Next, consider the everybody knows aggregator f. For any E ∈ 2Ω,

f
(
K1, . . . , Kn

)
E =

n⋂
i=1

KiE

⊂
n⋂
i=1

K̃iE

= f
(
K̃1, . . . , K̃n

)
E

As this hold for all E ∈ 2Ω, the everybody knows aggregator is increasing.

Next, consider the distributed knowledge aggregator ∨. For any E ∈ 2Ω,

∨
(
K1, . . . , Kn

)
E =

⋂
ω̄ /∈E

⋃
F⊂¬{ω̄}

n⋃
i=1

KjF

⊂
⋂
ω̄ /∈E

⋃
F⊂¬{ω̄}

n⋃
i=1

K̃jF

= ∨
(
K̃1, . . . , K̃n

)
E

As this hold for all E ∈ 2Ω, the distributed aggregator is increasing.

Proof of Proposition 5:

Fix a list of knowledge operators (K1, . . . , Kn) ∈ Seq(K) and sublist (K1, . . . , Km) ∈

Seq(K). Let A : Seq(K)→ K be naturally positive and increasing, and fix E ∈ 2Ω. As A is
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naturally positive,

A(K1, . . . , Km)E = A(K1, . . . , Km, K∅)E

Since A is increasing, and Km+1 is more informed than K∅, then

A(K1, . . . , Km, K∅)E ⊂ A(K1, . . . , Km, Km+1)E

Continuing in this manner for |n−m| steps gives

A(K1, . . . , Km)E ⊂ A(K1, . . . , Kn)E

As this hold for all E ∈ 2Ω, A(K1, . . . , Kn) is more informative than A(K1, . . . , Km), as

required.

Similarly, let A : Seq(K) → K be naturally negative and increasing, and fix E ∈ 2Ω. As

A is naturally negative,

A(K1, . . . , Km)E = A(K1, . . . , Km, KΩ)E

Since A is increasing, and Km+1 is less informed than KΩ, then

A(K1, . . . , Km, KΩ)E ⊃ A(K1, . . . , Km, Km+1)E

Continuing in this manner for |n−m| steps gives

A(K1, . . . , Km)E ⊃ A(K1, . . . , Kn)E

As this hold for all E ∈ 2Ω, A(K1, . . . , Km) is more informative than A(K1, . . . , Kn), as

required.

Proof of Proposition 6:

Let L ⊂ K, and suppose aggregator A : Seq(K)→ K is a 1-identity on L, and stationary.

Let L ∈ L. As A is a 1-identity on L, then A(L) = L. Since operator L is weakly less

informed than L, and also weakly more informed than L, and as A is stationary, therefore

A(L,L) = A(L) = L. Continuing by induction we have

A(L,L, . . . , L︸ ︷︷ ︸
k times

) = L
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for all k ∈ N. So A is an identity on L, as required.

Proof of Lemma 3:

Fix a correspondence operator K ∈ KC . There exists a correspondence γ : Ω→ 2Ω such

that KE = {ω ∈ Ω | γ(ω) ⊂ E} for all events E ∈ 2Ω. Then

KΩ = {ω ∈ Ω | γ(ω) ⊂ Ω} = Ω

For every pair of events E,F ∈ 2Ω,

K(E ∩ F ) = {ω ∈ Ω | γ(ω) ⊂ E ∩ F}

= {ω ∈ Ω | γ(ω) ⊂ E} ∩ {ω ∈ Ω | γ(ω) ⊂ F}

= KE ∩KF

Therefore KΩ = Ω and K(E ∩ F ) = KE ∩KF ), as required.

Now fix an operator K ∈ K such that KΩ = Ω and K(E ∩F ) = KE ∩KF for all events

E,F ∈ 2Ω. Let E : Ω→ 22Ω
be given by Equation 8, so that for ω ∈ Ω,

E(ω) = {E ∈ 2Ω | ω ∈ KE}

As KΩ = Ω, then Ω ∈ E(ω) for all ω ∈ Ω. In particular, E(ω) is non-empty. Define the

correspondence γ : Ω→ 2Ω by

γ(ω) =
⋂

F∈E(ω)

F

Let Kγ be given by Equation 6, so that for all events E ∈ 2Ω,

KγE = {ω ∈ Ω | γ(ω) ⊂ E}

First we show KE ⊂ KγE. Let ω ∈ KE. By definition, E ∈ E(ω). As E ∈ E(ω), then

certainly the intersection over all events in E(ω) is a subset of E. That is⋂
F∈E(ω)

⊂ E

As
⋂
F∈E(ω) = γ(ω) we have γ(ω) ⊂ E. Therefore ω ∈ KγE.
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Next we show KE ⊃ KγE. Let ω ∈ KγE. By definition, γ(ω) ⊂ E. As K(F1 ∩ F2) =

KF1 ∩ KF2 for all events F1, F2 ∈ 2Ω, for each ω ∈ Ω, the set E(ω) is closed under inter-

sections, and supersets. That is, F1, F2 ∈ E(ω) implies F1 ∩ F2 ∈ E(ω); and F1 ∈ E(ω)

with F1 ⊂ F2 implies F2 ∈ E(ω). As γ(ω) is the intersection of events in E(ω), therefore

γ(ω) ∈ E(ω). As γ(ω) ⊂ E, therefore E ∈ E(ω). That is, ω ∈ KE, as required.

Proof of Lemma 5:

The distributed knowledge aggregator is given by Equation 1 as

∨(K1, . . . , Kn)E =
⋂
ω̄ /∈E

⋃
F⊂¬{ω̄}

n⋃
i=1

KiF

Suppose Ki satisfies Monotonicity for all i = 1, . . . , n. Fix ω̄ ∈ Ω. For all F ⊂ ¬{ω̄}, then

KiF ⊂ Ki¬{ω̄} as Ki is Monotonic. As ¬{ω̄} ⊂ ¬{ω̄}, for each i ∈ 1, . . . , n,⋃
F⊂¬{ω̄}

KiF = Ki¬{ω̄}

Therefore ⋂
ω̄ /∈E

⋃
F⊂¬{ω̄}

n⋃
i=1

KiF =
⋂
ω̄ /∈E

⋃
j∈J

Kj¬{ω̄}

as required.

Proof of Proposition 9:

This result is presented as Theorem 1 of Bacharach [3]. The proof is not reproduced here.

Proof of Lemma 4:

Let γ : Ω→ 2Ω satisfy axioms P.1 and P.2, and let Kγ be the knowledge operator defined

by Equation 6. From Lemma 3, K satisfies axioms K.0, K.1, and K.2. By Bacharach’s

Theorem it remains to show that Kγ satisfies axioms K.3, K.4, and K.5.

For axiom K.3: Let ω ∈ KγE so that γ(ω) ⊂ E. By P.1, ω ∈ γ(ω), and thus ω ∈ E.

Therefore, KγE ⊂ E, and Kγ ∈ K3.
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Before we proceed to K4, notice that if γ(ω) = γ(ω′), then ω ∈ KγE if and only if

ω′ ∈ KγE. Conversely, if γ(ω) ∩ γ(ω′) = ∅, and given ω ∈ γ(ω), then ω′ /∈ γ(ω). Therefore,

if ω′ ∈ γ(ω), then ω ∈ KγE if and only if ω′ ∈ KγE.

For axiom K.4: Let ω /∈ KγKγE. Then, γ(ω) 6⊂ KγE, and so, there exists ω′ ∈ γ(ω) such

that ω′ /∈ KE. From the preceding note, ω /∈ KγE, and so, ¬KγKγE ⊂ ¬KγE, as required.

For axiom K.5: Let ω /∈ Kγ¬KγE. Then, γ(ω) 6⊂ ¬KγE. There is a state ω′ ∈ γ(ω)

such that ω′ /∈ ¬KγE, which is ω′ ∈ KγE. From the preceding note, ω ∈ KγE, and so,

¬Kγ¬KγE ⊂ KγE, as required.

Proof of Proposition 10:

Somebody knows and Everybody knows are clearly identities on K as they are just the

union and intersection, respectively, of a single knowledge operator.

Now we want to show distributed knowledge, ∨, is an identity on KC . As ∨ is

stationary, by Proposition 6, it is enough to show ∨ is a 1-identity on KC . Let K ∈ KC .

Then

∨(K)E =
⋂
ω̄ /∈E

⋃
F⊂¬{ω̄}

KE

As K ∈ KC implies K satisfies Monotonicity, then by Lemma 5, the aggregator ∨ can be
written in the form given by Equation 7.

∨(K)E =
⋂
ω̄ /∈E

K(¬{ω̄})

K ∈ KC also implies K satisfies Conjunction. Therefore

∨(K)E ⊂ K

(⋂
ω̄ /∈E

¬{ω̄}

)
= KE

From Lemma 1, KE ⊂ ∨(K)E. Therefore, ∨(K) = K and ∨ is a 1-identity, and thus an

identity, on KC .
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Similarly, we want to show common knowledge, ∧, is an identity on K4. As ∧ is

stationary, by Proposition 6, it is enough to show ∧ is a 1-identity on K4. Let K ∈ K4, so

that KE ⊂ KKE for all events E ∈ 2Ω. As f(K) = K, we have (f(K))(s) = K(s) for all

s ∈ N. Therefore, for all events E ∈ 2Ω,

∧(K)E =
∞⋂
s=1

(f(K))(s)E

=
∞⋂
s=1

K(s)E

= KE ∩KKE ∩KKKE ∩ . . .

= KE

Therefore ∧(K) = K and ∧ is a 1-identity, and thus an identity, on K4.

Proof of Lemma 6:

Let (K1, . . . , Kn) ∈ Seq(K1∩K4). We want to show that the somebody knows aggregator

g satisfies Positive Introspection.

Fix an event E ∈ 2Ω. For each j ∈ 1, . . . , n, operator Kj satisfies Positive Introspection,

so KjE ⊂ KjKjE. Since Kj is Monotonic,

KjE ⊂ KjKjE ⊂ Kj

[
n⋃
i=1

KiE

]

Taking the union of both sides over all j = 1, . . . , n yields

n⋃
j=1

KjE ⊂
n⋃
j=1

(
Kj

[
n⋃
i=1

KiE

])

which is to say

g
(
K1, . . . , Kn

)
E ⊂ g

(
K1, . . . , Kn

) [
g
(
K1, . . . , Kn

)]
E

As this hold for all E ∈ 2Ω, the somebody knows aggregator preserves Positive Introspection

if all input operators are Monotonic.
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Proof of Proposition 11:

Throughout, let (Ω, J, {Kj}j∈J be a knowledge model.

First, consider the everybody knows aggregation, fJE =
⋂
j∈J K

jE, for every E ∈ 2Ω.

We want to show the everybody knows aggregator preserves axioms K.0, K.1, K.2, and K.3,

and does not preserve K.4 or K.5.

K.0: Suppose KjΩ = Ω for all j ∈ J . Then

fJΩ =
⋂
j∈J

KjΩ =
⋂
j∈J

Ω = Ω

So fJ satisfies Awareness, and thus aggregator f preserves axiom K.0.

K.1: Suppose Kj satisfies Monotonicity for all j ∈ J . Let E ⊂ F , so that KjE ⊂ KjF

for all j ∈ J . Then

fJE =
⋂
j∈J

KjE ⊂
⋂
j∈J

KjF = fJF

So fJ satisfies Monotonicity, and thus aggregator f preserves axiom K.1.

K.2: Suppose Kj satisfies Conjunction for all j ∈ J , so that KjE ∩KjF ⊂ Kj(E ∩ F )

for all E,F ∈ 2Ω. Then

fJE ∩fJF =
⋂
j∈J

KjE ∩
⋂
j∈J

KjF

=
⋂
j∈J

(KjE ∩KjF )

⊂
⋂
j∈J

Kj(E ∩ F )

= fJ(E ∩ F )

So fJ satisfies Conjunction, and thus aggregator f preserves axiom K.2.

K.3: Suppose Kj satisfies Truth for all j ∈ J , so that KjE ⊂ E for all E ∈ 2Ω. Then

fJE =
⋂
j∈J

KjE ⊂
⋂
j∈J

E = E

So fJ satisfies Truth, and thus aggregator f preserves axiom K.3.

K.4: In Example 6, each agents’ knowledge operator satisfies Positive Introspection, but

fJ does not. Therefore, f does not preserve axiom K.4.
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K.5: We construct an example where each agent’s knowledge operator satisfies Negative

Introspection, but the aggregation fJ does not. Let Ω = {a, b, c}, J = {1, 2}, and K1, K2 :

2Ω → 2Ω be

K1∅ = {a, c}, K2∅ = {b, c}

K1{a, b} = ∅, K2{a, b} = ∅

K1{c} = {a, b, c}, K2{c} = {a, b, c}

K1E = E, K2E = E, otherwise

By inspection, the knowledge operators K1 and K2 satisfy Negative Introspection; in

each case ¬KjE ⊂ Kj¬KjE for all E ∈ 2Ω. However

¬fJ ∅ = ¬
(
K1∅ ∩K2∅

)
= ¬ ({a, c} ∩ {b, c}) = ¬{c} = {a, b}

While

fJ¬fJ ∅ = K1{a, b} ∩K2{a, b} = ∅ ∩ ∅ = ∅

Thus ¬fJ ∅ 6⊂ fJ¬fJ ∅, so fJ does not satisfy Negative Introspection. Therefore, f does

not preserve axiom K.5.

Now consider the common knowledge aggregation, ∧JE =
⋂∞
s=1

(
fJ
)(s)

E, for every

E ∈ 2Ω. We want to show the common knowledge aggregator preserves axioms K.0, K.1,

and K.3, and does not preserve K.2, K.4 or K.5.

K.0: Suppose KjΩ = Ω for all j ∈ J . As f preserves Awareness, fJΩ = Ω. Then

∧JΩ =
∞⋂
s=1

(
fJ
)(s)

Ω =
∞⋂
s=1

Ω = Ω

So ∧J satisfies Awareness, and thus aggregator ∧ preserves axiom K.0.

K.1: Suppose Kj satisfies Monotonicity for all j ∈ J . Let E ⊂ F , so that KjE ⊂ KjF

for all j ∈ J . As f preserves Monotonicity, fJE ⊂ fJF . Then

E ⊂ F =⇒ fJE ⊂ fJF =⇒
(
fJ
)(2)

E ⊂
(
fJ
)(2)

F =⇒ · · ·

So
(
fJ
)(s)

E ⊂
(
fJ
)(s)

F for all s ∈ N. Therefore

∧JE =
∞⋂
s=1

(
fJ
)(s)

E ⊂
∞⋂
s=1

(
fJ
)(s)

F = ∧JF
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So ∧J satisfies Monotonicity, and thus aggregator ∧ preserves axiom K.1.

K.2: We construct an example where each agent’s knowledge operator satisfies Conjunc-

tion, but the aggregation ∧J does not. Let Ω = {a, b, c}, J = {1}, and K1 : 2Ω → 2Ω

be

K1{a, b} = {a, b}

K1{a, c} = {a, c}

K1{a} = {a, b, c}

KE = ∅, otherwise

By inspection K1 satisfies Conjunction. In each case K1E∩K1F ⊂ K1(E∩F ) for all events

E,F ∈ 2Ω. For E = {a, b} and F = {a, c} the common knowledge aggregation ∧J has

∧J{a, b} ∩ ∧J = {a, b} ∩ {a, c} = {a}. However ∧J{a} ⊂ K (K{a}) = ∅, so ∧J{a} = ∅. As

{a} = ∧J{a, b} ∩ ∧J{a, c} 6⊂ ∧J ({a, b} ∩ {a, c}) = ∅

so ∧J does not satisfy Conjunction. Therefore, ∧ does not preserve axiom K.2.

K.3: Suppose Kj satisfies Truth for all j ∈ J , so that KjE ⊂ E for all E ∈ 2Ω. As f

preserves Truth, fJE ⊂ E for all events E ∈ 2Ω. Then

E ⊃ fJE ⊃
(
fJ
)(2)

E ⊃ · · ·

So
(
fJ
)(s)

E ⊂ E for all s ∈ N. Therefore

∧JE =
∞⋂
s=1

(
fJ
)(s)

E ⊂ E

So ∧J satisfies Truth, and thus aggregator ∧ preserves axiom K.3.

K.4: We construct an example where each agent’s knowledge operator satisfies Positive

Introspection, but the aggregation ∧J does not. Let Ω = {a, b, c, d, e}, J = {1, 2}, and

K1, K2 : 2Ω → 2Ω be

K1{a, b} = {a, c, d}, K2{a, b} = {a, c, e}

K1{a, c} = {a, b, d}, K2{a, c} = {a, b, e}

K1{a} = ∅, K2{a} = ∅

K1E = E, K2E = E, otherwise
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By inspection, both K1 and K2 satisfy Positive Introspection. The everybody knows aggre-

gation fJ has

fJ{a, b} = {a, c}, fJ{a, c} = {a, b}, fJ{a} = ∅, and fJ ∅ = ∅

From this, the common knowledge aggregation ∧J has

∧J{a, b} = {a}, ∧J{a} = ∅

As ∧J{a, b} 6⊂ ∧J ∧J {a, b}, the aggregation ∧J does not satisfy Positive Introspection.

Therefore, ∧ does not preserve axiom K.4.

K.5: We construct an example where each agent’s knowledge operator satisfies Negative

Introspection, but the aggregation ∧J does not. Let Ω = {a, b, c}, J = {1, 2}, and K1, K2 :

2Ω → 2Ω be

K1∅ = {a, c}, K2∅ = {b, c}

K1{a, b} = ∅, K2{a, b} = ∅

K1{c} = {a, b, c}, K2{c} = {a, b, c}

K1E = E, K2E = E, otherwise

By inspection, the knowledge operators K1 and K2 satisfy Negative Introspection; in each

case ¬KjE ⊂ Kj¬KjE for all E ∈ 2Ω. However

∧J∅ = fJ∅ ∩fJ fJ ∅ ∩ · · ·

= {c} ∩fJ{c} ∩fJ fJ {c} ∩ · · ·

= {c} ∩ {a, b, c} ∩ {a, b, c} ∩ · · · = {c}

so ¬ ∧J ∅ = {a, b}. While

∧J{a, b} = fJ{a, b} ∩fJ fJ {a, b} ∩ · · ·

= ∅ ∩fJ∅ ∩fJ fJ ∅ ∩ · · ·

= ∅ ∩ ∅ ∩ ∅ ∩ · · · = ∅

so ∧J¬ ∧J ∅ = ∅. Thus ¬ ∧J ∅ 6⊂ ∧J¬ ∧J ∅, and ∧J does not satisfy Negative Introspection.

Therefore, ∧ does not preserve axiom K.5.

53



Now consider the somebody knows aggregation, gJE =
⋃
j∈J K

jE, for every E ∈ 2Ω.

We want to show the somebody knows aggregator preserves axioms K.0, K.1, and K.3, and

does not preserve K.2, K.4 or K.5.

K.0: Suppose KjΩ = Ω for all j ∈ J . Then

gJΩ =
⋃
j∈J

KjΩ =
⋃
j∈J

Ω = Ω

So gJ satisfies Awareness, and thus aggregator g preserves axiom K.0.

K.1: Suppose Kj satisfies Monotonicity for all j ∈ J . Let E ⊂ F , so that KjE ⊂ KjF

for all j ∈ J . Then

gJE =
⋃
j∈J

KjE ⊂
⋃
j∈J

KjF = gJF

So gJ satisfies Monotonicity, and thus aggregator g preserves axiom K.1.

K.2: In Example 6, each agents’ knowledge operator satisfies Conjunction, but gJ does

not. Therefore,g does not preserve axiom K.4.

K.3: Suppose Kj satisfies Truth for all j ∈ J , so that KjE ⊂ E for all E ∈ 2Ω. Then

gJE =
⋃
j∈J

KjE ⊂
⋃
j∈J

E = E

So gJ satisfies Truth, and thus aggregator g preserves axiom K.3.

K.4: We construct an example where each agent’s knowledge operator satisfies Positive

Introspection, but the aggregation gJ does not. Let Ω = {a, b}, J = {1, 2}, and K1, K2 :

2Ω → 2Ω be

K1∅ = ∅, K2∅ = ∅

K1{a} = {a}, K2{a} = {b}

K1{b} = {b}, K2{b} = {b}

K1{a, b} = ∅, K2{a, b} = ∅

By inspection, the knowledge operators K1 and K2 satisfy Positive Introspection; in each

case KjE ⊂ KjKjE for all E ∈ 2Ω. However

gJ{a} = K1{a} ∪K2{a} = {a} ∪ {b} = {a, b}
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While

gJ gJ {a} = K1{a, b} ∪K2{a, b} = ∅ ∪ ∅ = ∅

Thus gJ{a} 6⊂ gJ gJ {a}, so gJ does not satisfy Positive Introspection. Therefore, g does

not preserve axiom K.4.

K.5: We construct an example where each agent’s knowledge operator satisfies Negative

Introspection, but the aggregation gJ does not. Let (Ω, J, {Kj}j∈J) be as in Example 6. As

the knowledge operators K1, K2 are partitional, by Proposition 9 they satisfy Negative Intro-

spection. However, ¬g{a, c} = {b} while gJ¬g{a, c} = ∅. Thus ¬gJ{a, c} 6⊂ gJ¬gJ{a, c},

so gJ does not satisfy Negative Introspection. Therefore, g does not preserve axiom K.5.

Finally, consider the distributed knowledge aggregation, ∨JE =
⋂
ω̄ /∈E

⋃
F⊂¬{ω}g

JF ,

for every E ∈ 2Ω. We want to show the distributed knowledge aggregator forces axioms K.0,

K.1, and K.2, and preserves K.3, K.4 and K.5.

K.0: ∨JΩ is an empty intersection, and so, ∨JΩ = Ω regardless of any assumptions of

each Kj. Therefore the distributed knowledge aggregator ∨ forces axiom K.0.

K.1: Let E1, E2 ∈ 2Ω, such that E1 ⊂ E2. As each state ω̄ not in E1 is either outside

E2, or inside E2 but outside E1, then

∨JE1 =
⋂
ω̄ /∈E1

⋃
F⊂¬{ω}

gJF

=

 ⋂
ω̄ /∈E2

⋃
F⊂¬{ω}

gJF

 ∩
 ⋂
ω̄∈(E2∩¬E1)

⋃
F⊂¬{ω}

gJF


⊂
⋂
ω̄ /∈E2

⋃
F⊂¬{ω}

gJF

= ∨JE2

So ∨J satisfies Monotonicity regardless of any assumptions on each Kj. Therefore the dis-

tributed knowledge aggregator ∨ forces axiom K.1.
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K.2: Let E1, E2 ⊂ Ω. Then

∨JE1 ∩ ∨JE2 =

 ⋂
ω̄ /∈E1

⋃
F⊂¬{ω}

gJF

 ∩
 ⋂
σ̄ /∈E2

⋃
F⊂¬{σ̄}

gJF


=

⋂
ω̄ /∈E1∩E2

⋃
F⊂¬{ω̄}

gJF

= ∨J(E1 ∩ E2)

So ∨J satisfies Conjunction regardless of any assumptions on each Kj. Therefore the dis-

tributed knowledge aggregator ∨ forces axiom K.2.

K.3: Suppose Kj satisfies Truth for all j ∈ J , so that KjE ⊂ E for all E ∈ 2Ω. As g

preserves Truth, gE ⊂ E for all events E ∈ 2Ω. Then

∨JE =
⋂
ω̄ /∈E

⋃
F⊂¬{ω}

gJF

⊂
⋂
ω̄ /∈E

⋃
F⊂¬{ω}

F

As the union of all subsets of ¬{ω̄} is just ¬{ω̄},

=
⋂
ω̄ /∈E

¬{ω̄}

= E

So ∨J satisfies Truth, and thus aggregator ∨ preserves axiom K.3.

For properties K.4 and K.5, by Proposition 2, the distributed knowledge aggregator ∨ is

associative. In particular,

∨
(
K1, · · · , K |J |

)
= ∨

(
∨(K1), · · · ,∨(K |J |)

)
As ∨ forces Monotonicity, so ∨(Kj) is monotonic, we may assume, without loss of generality,

that operator Kj is monotonic. Further, when each Kj is monotonic then by Lemma 5, for

all events E ∈ 2Ω,

∨JE =
⋂
ω̄ /∈E

gJ(¬{ω̄})
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K.4: Suppose Kj satisfies Positive Introspection for all j ∈ J , so that KjE ⊂ KjKjE

for all E ∈ 2Ω. Assume, without loss of generality, that Kj satisfies Monotonicity for each

j ∈ J . By Lemma 6, gJ then satisfies Positive Introspection, so gJE ⊂ gJ gJ E for all

events E ∈ 2Ω. By Lemma 1, gJ gJ E ⊂ ∨J gJ E, so gJE ⊂ ∨J gJ E for all events E ∈ 2Ω.

Then

∨JE =
⋂
ω/∈E

gJ(¬{ω})

⊂
⋂
ω/∈E

∨J gJ (¬{ω})

As ∨ forces K.1 and K.2, the aggregation ∨J distributes over intersections. Therefore

= ∨J
⋂
ω/∈E

gJ(¬{ω})

= ∨J ∨J E

So ∨J satisfies Positive Introspection, and thus aggregator ∨ preserves axiom K.4.

K.5: Suppose Kj satisfies Negative Introspection for all j ∈ J , so that ¬KjE ⊂ Kj¬KjE

for all E ∈ 2Ω. Assume, without loss of generality, that Kj satisfies Monotonicity for each

j ∈ J . Using de Morgan’s Laws we have

¬ ∨J E = ¬

(⋂
ω/∈E

⋃
j∈J

(¬{ω}))

)
=
⋃
ω/∈E

⋂
j∈J

¬Kj(¬{ω})

As each ¬KjE ⊂ Kj¬KjE for all j ∈ J , and as ∨J is a positive aggregator

⊂
⋃
ω/∈E

⋂
j∈J

Kj¬Kj(¬{ω})

⊂
⋃
ω/∈E

⋂
j∈J

∨J¬Kj(¬{ω})

Since ∨ forces K.1 and K.2, the aggregation ∨J distributes over intersections. Then

=
⋃
ω/∈E

∨J
⋂
j∈J

¬Kj(¬{ω})
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As ∨J satisfies Monotonicity, for any sets E1, . . . , En, then ∨JE1 ∪ . . . ∪ ∨JEn ⊂ ∨J(E1 ∪
. . . ∪ En). In particular

⊂ ∨J
(⋃
ω/∈E

⋂
j∈J

¬Kj(¬{ω})

)

and again using de Morgan’s laws gives

= ∨J
(
¬
⋂
ω/∈E

gJ(¬{ω})

)
= ∨J¬ ∨J E

So ∨J satisfies Negative Introspection, and thus aggregator ∨ preserves axiom K.5.

Proof of Proposition 8:

Fix a state space Ω and let K be the associated set of knowledge operators. Let

(K1, . . . , Kn) ∈ Seq(KC), so that all operators in the sequence are correspondence oper-

ators. By Lemma 3 each Ki is in K0 ∩ K1 ∩K2.

Consider the distributed knowledge aggregator ∨. As (K1, . . . , Kn) ∈ Seq(Kl) for l =

0, 1, 2, and as ∨ is, by Proposition 11, Kl-preserving for l = 0, 1, 2, therefore ∨(K1, . . . , Kn) ∈

Kl for l = 0, 1, 2. Therefore by Lemma 3 ∨(K1, . . . , Kn) ∈ KC . As this is true for all

sequences (K1, . . . , Kn) ∈ Seq(KC), the distributed knowledge aggregator is correspondence-

preserving.

Similarly by Proposition 11 and Lemma 3, the everybody knows aggregator f is

correspondence-preserving.

Consider the common knowledge aggregator ∧. As (K1, . . . , Kn) ∈ Seq(Kl) for l =

0, 1, and as ∧ is, by Proposition 11, Kl-preserving for l = 0, 1, therefore ∨(K1, . . . , Kn) ∈ Kl
for l = 0, 1. Now we turn to axiom K.2, the Conjunction axiom. By Proposition 11, the

somebody knows aggregator preserves axioms K.1 and K.2, so

f(K1, . . . , Kn)(E ∩ F ) = f(K1, . . . , Kn)E ∩f(K1, . . . , Kn)F

Suppose, for the purposes of induction, that (f(K1, . . . , Kn))
(s)

preserves axioms K.1 and
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K.2 for some s ∈ N. Then

(
f(K1, . . . , Kn)

)(s+1)
(E ∩ F )

= f (K1, . . . , Kn)
[(
f(K1, . . . , Kn)

)(s)
(E ∩ F )

]
= f (K1, . . . , Kn)

[(
f(K1, . . . , Kn)

)(s)
E ∩

(
f(K1, . . . , Kn)

)(s)
F )
]

= f (K1, . . . , Kn)
[(
f(K1, . . . , Kn)

)(s)
E
]
∩f(K1, . . . , Kn)

[(
f(K1, . . . , Kn)

)(s)
F
]

=
(
f(K1, . . . , Kn)

)(s+1)
E ∩

(
f(K1, . . . , Kn)

)(s+1)
F

By induction over s, (f(K1, . . . , Kn))
(s)

satisfies axiom K.1 and K.2 for all s ∈ N. Therefore

∧(K1, . . . , Kn)(E ∩ F ) =
∞⋂
s=1

(
f(K1, . . . , Kn)

)(s)
(E ∩ F )

=
∞⋂
s=1

(
f(K1, . . . , Kn)

)(s)
E ∩

∞⋂
s=1

(
f(K1, . . . , Kn)

)(s)
F

= ∧(K1, . . . , Kn)E ∩ ∧(K1, . . . , Kn)F

so ∧ satisfies axiom K.1 and K.2. Therefore by Lemma 3 ∧(K1, . . . , Kn) ∈ KC . As this

is true for all sequences (K1, . . . , Kn) ∈ Seq(KC), the common knowledge aggregator is

correspondence-preserving.

Proof of Proposition 7:

Fix a state space Ω and let K be the associated set of knowledge operators. Let

(K1, . . . , Kn) ∈ Seq(KP ), so that all operators in the sequence are partitional. By Proposi-

tion 9 each Ki is in K0 ∩ K1 ∩K2 ∩ K3 ∩ K4 ∩ K5.

Consider the distributed knowledge aggregator ∨. As (K1, . . . , Kn) ∈ Seq(Kl) for

l = 0, . . . 5, and as ∨ is, by Proposition 11, Kl-preserving for l = 0, . . . , 5. Consequently,

∨(K1, . . . , Kn) ∈ Kl for l = 0, . . . , 5. By Proposition 9, ∨(K1, . . . , Kn) ∈ KP . As this

is true for all sequences (K1, . . . , Kn) ∈ Seq(KP ), the distributed knowledge aggregator is

partition-preserving.

Consider the common knowledge aggregator ∧. For ease of notation, write J =

(K1, . . . , Kn) ∈ Seq(KP ), and Seq(J) for the set of finite sequences of agents j ∈ J . As
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each Kj is partitional, let πj be the partition which represents Kj according to Equation 5.

That is, KjE = {ω ∈ Ω | πj(ω) ⊂ E}. Let π∧(J) be the partition of Ω which is the finest

common coarsening of all partitions πj. That is π∧(J)(ω) ⊃ πj(ω) for all ω ∈ Ω and j ∈ J ;

and π∧(J) is the finest partition with this property. The finest common coarsening is given

by

π∧(J)(ω) =
⋃

(j1,...,jn)∈Seq(J)

πj1
(
· · ·
(
πjn (ω) · · ·

))
We will show that

∧JE = {ω ∈ Ω | π∧(J)(ω) ⊂ E}

By Proposition 9, each Kj satisfies Monotonicity and Conjunction, so Kj(E ∩ F ) =

KjE ∩KjF for all events E,F ∈ 2Ω and agents j ∈ J . Therefore,

∧JE =
∞⋂
s=1

(
fJ
)(s)

E =
⋂

(j1,...,jn)∈Seq(J)

Kjn · · ·Kj1E

So ω ∈ ∧JE if and only if ω ∈ Kjn · · ·Kj1E for all (j1, . . . , jn) ∈ Seq(J).

Fix E ∈ 2Ω. By Equation 5, for all ω ∈ Ω,

ω ∈ Kj1E ⇐⇒ πj1(ω) ⊂ E

Suppose, for the purpose of induction, that for all sequences (j1, . . . , jn−1) of length n − 1,

and all ω ∈ Ω,

ω ∈ Kjn−1 · · ·Kj1E ⇐⇒ πj1
(
· · ·
(
πjn−1 (ω)

))
⊂ E

Then by Equation 5,

ω ∈ Kjn · · ·Kj1E ⇐⇒ πjn(ω) ⊂ Kjn−1 · · ·Kj1E

⇐⇒
[
ω̃ ∈ πjn(ω) =⇒ ω̃ ∈ Kjn−1 · · ·Kj1E

]
Using the inductive hypothesis,

⇐⇒
[
ω̃ ∈ πjn(ω∗) =⇒ πj1

(
· · ·
(
πjn−1 (ω̃)

))
⊂ E

]
⇐⇒

[
πj1
(
· · ·
(
πjn−1 (ω̃)

))
⊂ E for all ω̃ ∈ πjn(ω)

]
⇐⇒

⋃
ω̃∈πjn (ω)

πj1
(
· · ·
(
πjn−1 (ω̃)

))
⊂ E
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As the partition functions are set-valued functions,

⇐⇒ πj1
(
· · ·
(
πjn (ω)

))
⊂ E

By induction over the length of the sequence of agents, for all sequences (j1, . . . , jn) ∈ Seq(J),

and all ω ∈ Ω,

ω ∈ Kjn · · ·Kj1E ⇐⇒ πj1
(
· · ·
(
πjn (ω)

))
⊂ E

Aggregating over all sequences gives

ω ∈
⋂

(j1,...,jn)∈Seq(J)

Kjn · · ·Kj1E ⇐⇒
⋃

(j1,...,jn)∈Seq(J)

πjn
(
· · ·
(
πj1 (ω)

))
⊂ E

which is

⋂
(j1,...,jn)∈Seq(J)

Kjn · · ·Kj1E =

ω ∈ Ω |
⋃

(j1,...,jn)∈Seq(J)

πjn
(
· · ·
(
πj1 (ω)

))
⊂ E


Therefore

∧JE = {ω ∈ Ω | π∧(J)(ω) ⊂ E}

as required.

Proof of Proposition 12:

Let (K1, . . . , Kn), (K̃1, . . . , K̃n) ∈ Seq(K1) such that K̃i is more informed than Ki for all

i = 1, . . . , n. Let J = (K1, . . . , Kn) and J̃ = (K̃1, . . . , K̃n). Fix an event E ∈ 2Ω. We want

to show that the common knowledge aggregator ∧ is increasing. That is,

∧JE ⊂ ∧J̃E

From Lemma 2, the everybody knows aggregator f is increasing. Therefore fJE ⊂ fJ̃E.

Suppose, for the purposes of induction, that
(
fJ
)(s)

E ⊂
(
fJ̃
)(s)

E for some s ∈ N. By

Proposition 11, the aggregation fJ is monotonic. So

(
fJ
)(s+1)

E = fJ
((

fJ
)(s)
)
E ⊂ fJ

((
fJ̃
)(s)
)
E
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As fJ̃ is more informative than fJ ,

fJ

((
fJ̃
)(s)
)
E ⊂ fJ̃

((
fJ̃
)(s)
)
E =

(
fJ̃
)(s+1)

E

By induction over s ∈ N, for all s ∈ N

(
fJ
)(s)

E ⊂
(
fJ̃
)(s)

E

Therefore

∧JE =
∞⋂
s=1

(
fJ
)(s)

E ⊂
∞⋂
s=1

(
fJ̃
)(s+1)

E = ∧J̃

As this hold for all E ∈ 2Ω, the common knowledge aggregator is increasing.

Proof of Proposition 13:

Let (K1, . . . , Kn) ∈ Seq(K) with Ki ∈ KD for at least one i ∈ 1, . . . , n. Let A : Seq(K)→

K be a negative aggregator, so that for all events E ∈ 2Ω, and all i = 1, . . . , n:

A(K1, . . . , Kn)E ⊂ KiE

Suppose, without loss of generality, that K1 ∈ KD. Then

[
A(K1, . . . , Kn)E

]
∩
[
A(K1, . . . , Kn)¬E

]
⊂ K1E ∩K1¬E = ∅

Therefore A(K1, . . . , Kn) ∈ KD, as required.

Proof of Proposition 14:

Let Ω be state space, and K the associated set of knowledge operators. Let A : Seq(K)→

K be a positive aggregator.

Choose two states a, b ∈ Ω with a 6= b. Define knowledge operators K1, K2 ∈ K by

K1E = E, K2E =


(E \ {a}) ∪ {b} ; for a ∈ E, b /∈ E
(E \ {b}) ∪ {a} ; for a /∈ E, b /∈ E
E ; otherwise
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so that K1 represents a fully informed agent, and K2 represents an agent who is mostly fully

informed, but mixes up state a and state b. By inspection, both operators K1 and K2 satisfy

Axiom D. Moreover

g(K1, K2){a} = K1{a} ∪K2{a} = {a} ∪ {b} = {a, b}

g(K1, K2)¬{a} = K1¬{a} ∪K2¬{a} = ¬{a} ∪ ¬{b} = Ω

Therefore g(K1, K2){a} ∩g(K1, K2)¬{a} = {a, b} 6= ∅.

By Proposition 4 the aggregator A is more informative than g, so that for all events

E ∈ 2Ω,

A(K1, K2)E ⊃ g(K1, K2)E

In particular,

A(K1, K2){a} ∩ A(K1, K2)¬{a} ⊃ {a, b} ∩ Ω ) ∅

As A(K1, K2){a}∩A(K1, K2)¬{a} 6= ∅, the positive aggregator A does not preserve Axiom

D.
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